

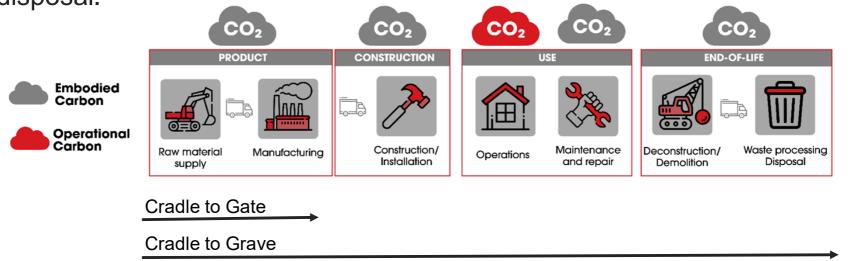
Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story

Elizabeth Grant, PhD, AIA

Building & Roofing Science Research Lead, GAF

Benjamin Meyer, AIA, NCARB, LEED AP

Building Enclosure Business Director, Siplast



Whole-Life Carbon

Whole-Life Carbon

Whole Life Carbon = Embodied Carbon + Operational Carbon

Embodied carbon: greenhouse gas emissions from supply of raw materials, manufacturing, transport, construction/installation, maintenance and repair, deconstruction/demolition and waste processing/disposal. Operational carbon: the greenhouse gas emissions due to the in-use phase of a building, such as energy consumption.

Whole-Life Carbon

Today and in the Future

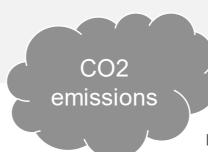
"Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime."

Embodied Carbon 101: Envelope, Boston Society for Architecture

Kg of CO2e

Energy Generation Manufacturing Disposable Goods Durable Goods Transportation Installation

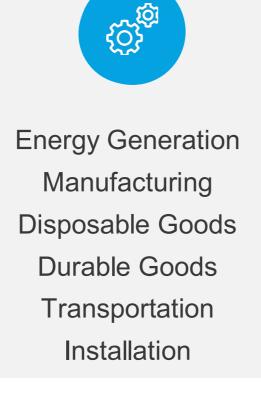
202


Your flight

No durable good

created

Reduce Emissions


Source: xlibber (CC BY 2.0 DEED)

Building Enclosure Science and Technology

8

Kg of CO2e

Wallpaper Product without use-phase benefits

CO2

emissions

Reduce Emissions Extend Useful Life Increase Performance Consider 3 Rs

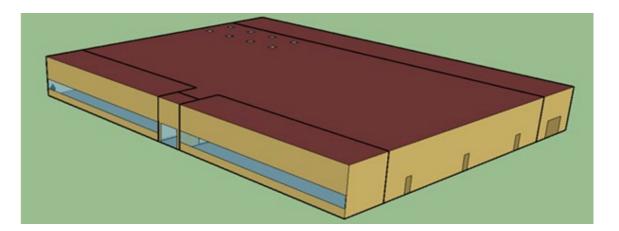
9

Kg of CO2e

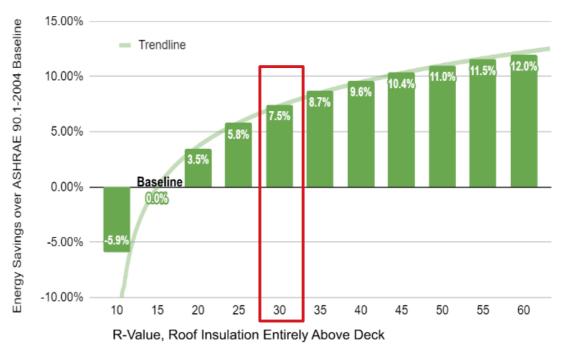
Energy Generation Manufacturing Disposable Goods Durable Goods Transportation Installation

202

Insulation Product with usephase benefits

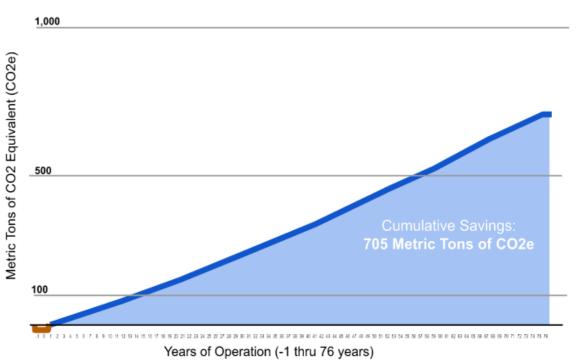


Give Operational CO2e Benefit Reduce Emissions Extend Useful Life Increase Performance Consider 3 Rs


Building Enclosure Science and Technology 10

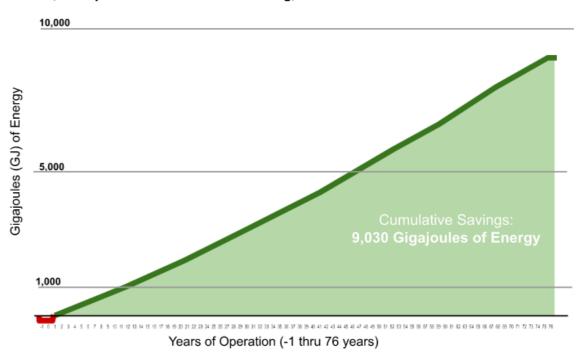
- Stand-alone retail, DOE prototype building, approx. 25,000 sq.ft. (178 ft. x 139 ft.)
- Climate Zone 4A
- Modeled to ASHRAE 90.1-2019
- ASHRAE 90.1-2004 insulation requirements as a baseline
- CO2e from DOE 2011 Buildings Energy Data Book
- Insulation embodied energy and carbon data from PIMA's industry-wide EPD

Look what happens when you compare operational energy savings for initial insulation levels beyond the R-15 assumed by the PIMA EPD!

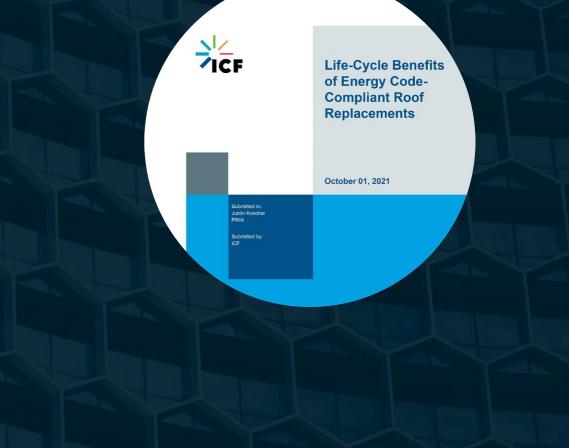

Stand-Alone Retail Whole-Building Energy Savings 25,000 Sq.Ft. DOE Prototype Building in Climate Zone 4A

Assumptions:

- 75-year building life
- Begins at R-30
- Increased every 20 years by R-10 (with roof replacement)
- Embodied carbon, replacement embodied carbon, and end-oflife disposal are taken into account.


Cumulative Carbon Savings for Roof Insulation Over 75-Year Building Life 25,000 Sq.Ft. Stand-Alone Retail Building, Climate Zone 4A

Energy savings track with carbon savings


- Increase in embodied energy from R-15 to R-30 is 38.3 GJ
- Pays back in less than five months!

Cumulative Energy for Roof Insulation Savings Over 75-Year Building Life 25,000 Sq.Ft. Stand-Alone Retail Building, Climate Zone 4A

2021 PIMA Report

Life-Cycle Benefits of Energy Code-Compliant Roof Replacements by ICF, October 1, 2021

2021 PIMA Report: Methodology

4 Commercial Building Types in 5 Climate Zones

Table 1 – Building Energy Modeling Characteristics

DOE Commercial Building Types	DOE Model Vintage	Climate Zone	City Locations	
Small Office	New Construction (2004)	2A Hot Humid	Tampa, FL (2A)	
Stand-alone Retail	Small office building model	3A Warm Humid	Atlanta, GA (3A)	
Primary School	roof construction modified from "Typical Wood Joist Attic, Floor Insulation Only" to low-sloped roof with "Insulation Entirely Above Deck."	4A Mixed Humid	New York City, NY (4A)	
Strip Mall			5A Cool Humid	Chicago, IL (5A)
		SA COOLHUITIIO	Buffalo, NY (5A)	
		6A Cold Humid	Montreal, Canada (6A)	
			Rochester, MN (6A)	

2021 PIMA Report: Methodology

Baseline Roof Insulation

 Assumes R-Value of 12.5 for all buildings and climate zones, based on PIMA's research on typical buildings.

Code-Compliant Roof Insulation

 Meets requirements of ASHRAE 90.1-2019/2021 IECC-C for each climate zone

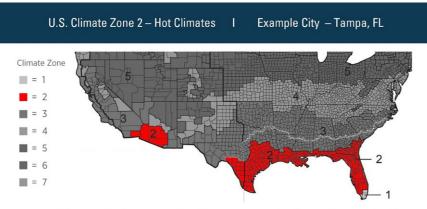
Climate Zone	Baseline Roof Insulation R-Value	Code-Compliant Roof Insulation R-Value	Incremental Roof Insulation Thickness Increase (in)
2A	12.5	25.0	2.2
3A	12.5	25.0	2.2
4A	12.5	30.0	3.1
5A	12.5	30.0	3.1
6A	12.5	30.0	3.1

Table 3 – Insulation Entirely Above Deck R-value and Incremental Thickness Increase

2021 PIMA Report: Key Learnings Code-Compliant Roof Replacement Analysis Results

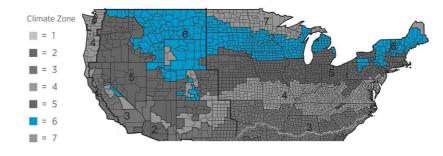
- Absolute energy savings are primarily driven by a reduction in natural gas use.
- Energy fuel type saved is generally a function of climate zone.
- Relative energy savings tend to be greater for larger buildings.

2021 PIMA Report: Key Learnings


Life-Cycle Benefits of Code-Compliant Roof Replacements

- Roof replacements are economical under various conditions.
- Roof replacements support transition to building electrification.
- Roof replacements support building performance standards and carbon reduction goals.

2021 PIMA Report: Key Learnings


Results by Climate Zone

Potential Savings Estimates for Roof Replacements in Climate Zone 2 (R-25)

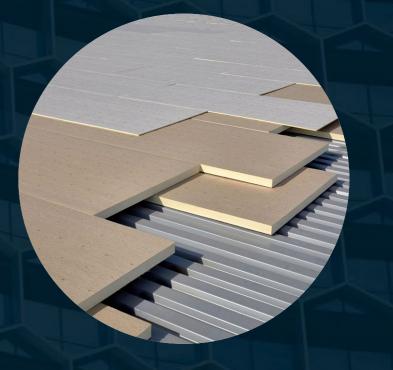
Building Type	Annual Total Energy Savings	Cumulative Total Energy Cost Savings	Cumulative Energy Cost Savings per SF	Cumulative Total CO2e per SF
Primary School	3%	\$201,921	\$2.73	31.78 lbs.
Retail Store	2%	\$44,088	\$1.77	19.44 lbs.
Strip Mall	3%	\$61,333	\$2.73	29.54 lbs.
Small Office	3%	\$9,456	\$2.73	18.16 lbs.

U.S. Climate Zone 6 - Cold Climates I Example City – Montréal Canada

Potential Savings Estimates for Roof Replacements in Climate Zone 6 (R-30)

Building Type	Annual Total Energy Savings	Cumulative Total Energy Cost Savings	Cumulative Energy Cost Savings per SF	Cumulative Total CO2e per SF
Primary School	12%	\$444,636	\$6.01	107.12 lbs.
Retail Store	7%	\$79,890	\$3.20	56.87 lbs.
Strip Mall	6%	\$89,447	\$3.97	64.01 lbs.
Small Office	8%	\$23,518	\$4.27	53.61 lbs.

Source: PIMA, used with permission.


Support for Carbon Investment Decisions

High	Reduce use Improve products and manufacturing to lower embodied values.	Use strategically Improve products and manufacturing to lower embodied values.
Low	Reduce use Substitute for high embodied carbon alternatives with equal performance. Use as a carbon sink if possible.	Use more; maximize benefit Substitute for high embodied carbon alternatives with equal performance. Use operational carbon savings to offset embodied carbon.
	Low	→ High

Operational Carbon Savings

We can consider product embodied carbon as a potential investment.

Design choices and product selection can have a significant impact on whole-life carbon targets for a building.

Thank You

Building & Roofing Science

Connect with us on **Linked** in

24