Design and Analysis of Ventilation Behind Rainscreen Cladding

Dr John Straube Ph.D., P.Eng.

Principal, RDH Building Science Associate Professor, University of Waterloo

Department of Civil and Environmental Engineering Architectural Engineering

Presentation Outline

- Background definitions
- Airflow physics fundamentals
- Predicting airflow resistance
- Predicting driving air pressures
- Conclusions

Rainscreen Definition (RAiNA)

"An assembly applied to an exterior wall which consists of, at minimum

- an outer layer,
- an inner layer, and
- a cavity between them

sufficient for the passive removal of liquid water and water vapor"

Rainscreen Definition (RAiNA)

"An assembly applied to an exterior wall which consists of, at minimum

• an outer layer,

- Ventilation!
- an inner layer, and
- a cavity between them

sufficient for the passive removal of liquid water and

Practical Conceptual Rainscreen

- Cladding = outer layer
- Air & Water control = inner layer
- Gap = cavity

- Often we add insulation (ci)
- Air Barrier & Water Resistive Barrier is a code / practical requirement

Two Ventilated System Types

Type 1: vents top and bottom

Type 2: distributed vents

What / Why Ventilation Drying

Defined: "intentional airflow between exterior and cavity"

- •1. Important for some systems that
 - \circ $\,$ retain drain water, and/or $\,$
 - \circ $\$ have claddings that absorb water
- •2. Bypasses cladding vapor resistance
 - •Low permeance metal, HPL, even fiber cement

Diffusion

• Drying through materials

Air Flow Physics

Department of Civil and Environmental Engineering Architectural Engineering

Previous Research

K.Liersch Belüftete Dach- und Wandkonstruktionen

Band 1 · Vorhangfassaden

Bauphysikalische Grundlagen des Wärme- und Feuchteschutzes

K Liersch Belüftete Dach- und Wandkonstruktionen

Band 2 · Vorhangfassaden

Anwendungstechnische Grundlagen

ASHRAE RP-1091 -- Development of Design Strategies for Rainscreen and Sheathing Membrane Performance in Wood Frame Walls

Ventilated Wall Claddings: Review, Field Performance, and Hygrothermal Modeling **CAVITY VENTILATION BEHIND BRICK VENEER CLADDING: EXPERIMENTAL AND NUMERICAL INVESTIGATION**

The Role of Small Gaps Behind Wall Claddings on //

Civil Engineering Dept & School of Architecture, University of Waterloo Jonathan Smegal, M.A.Sc.

Research in Building Physics and Building Engineering - Faxion Condon, Iso and Building Engineering - Faxion Condon, Iso and the second states of the second second

John Straube, PhD, PEng

RDH

Associate Member ASHRAE

Measured ventilation rates in water managed wall cavities

M.K. Bassett & S. McNeu Building Research Association of New Zealand Limited (BRANZ Ltd)

M.R. Bassett & S. McNeil

Graham Finch

Student Member A SHRAE

M. Vanpachtenbeke^{1,2}, J. Langmans¹, S. Roels¹, J. Van den Bulcke², and J. Van Acker² ¹KU Leuven Department of Civil Engineering, Building Physics Section, Kasteelpark Arenberg 40 – bus 02447, BE-3001 Heverlee (Leuven), Belgium ²UGent Department of Forest and Water Management, Laboratory of Wood Technology – Woodlab, Coupure Links 653, BE-9000 Ghent, Belgium michiel.vanpachtenbeke@kuleuven.be, michiel.vanpachtenbeke@ugent.be

Ventilation System Decomposition

- $A \rightarrow B$ and $C \rightarrow D$ are vents
- $B \rightarrow C$ is the cavity
- Flow is constant along the path
- Hence find pressure loss for each of the three steps at a given flow

$$\Delta \mathbf{P}_{\text{total}} = \Delta \mathbf{P}_{\text{vent, entry}} + \Delta \mathbf{P}_{\text{cavity}} + \Delta \mathbf{P}_{\text{vent, exit}}$$

Flow through Slots / Vents

• Pressure drop varies with dynamic pressure (v²)

 $\Delta P_{vent} = C \cdot \frac{1}{2} \cdot \rho \cdot v^2 \quad \text{(velocity = flow / area)}$

• Coefficients from testing / SMACNA / ASHRAE

Experiments (Pinon et al 2004)

	[mm]	[mm]	С	С	С
Vent type	Vent size	Cavity Depth	Inlet	Outlet	Inlet+Outlet
Circular	27φ	19 (3/4")	2.13	2.01	4.14
Rectangular	9.5 x 57	19	2.25	2.02	4.27
	(3/8 x 2-1/4)	50 (2")	2.19	1.38	3.57
		100 (4")	2.29	1.19	3.48
Slot	10	19	1.81	1.93	3.74
	(3/8")	50	2.24	1.71	3.95
Slot	19	19	1.84	3.02	4.86
	(3/4")	50	1.67	2.06	3.73
		100	2.21	2.61	4.82

$$\Delta \mathbf{P}_{\mathsf{vent}} = \mathbf{C} \cdot \frac{1}{2} \cdot \rho \cdot \mathbf{v}^2$$

- Most vents have a C of around 2.0 . . .
- But, a ½" diameter hole every 24" o.c. has an area over 60 times less than a ½" slot
- For the same flow rate this is a difference in pressure loss of over 3700!

Recommended

• Relevant coefficients from research

 $\Delta P_{vent} = C \cdot \frac{1}{2} \cdot \rho \cdot v^2$ remember v changes with Flow and Area

Flow Through Cavity

• Assume laminar flow (most common)

•
$$\Delta P_{\text{cavity}} = \frac{v h}{4610 \gamma d^2} = \frac{Q h}{4610 \gamma b d^3}$$

d is the cavity depth [m],

v is the cavity flow velocity [m/s]

h is the cavity height [m],

b is the cavity width [m],

 $\boldsymbol{\gamma}$ is a blockage factor, and

Q is the flow volume $[m^3/s]$

• Therefore, for cavity double the flow, double the pressure drop

System Flow

• Analysis can now match applied pressure loss to air pressure differences driving ventilation

Air pressures driving ventilation

Department of Civil and Environmental Engineering Architectural Engineering

What drives ventilation flow

- Wind pressure variations
 - Highly variable can be large, often small
- Thermal buoyancy
 - Reliable, predictable, upward
- Moisture buoyancy
 - Small, upward

Wind pressure variations

- Highly dynamic
- Direction up/down
- Ventilation can be driven by spatially variable pressures
- Varies as fraction of
 ½ · ρ · ν²
- Perhaps a few % to 50%
- Commonly a few Pa to short bursts of 20-50 Pa

Example pressure contours from ASHRAE Handbook of Fundamentals

Wind Pressures Can Drive Ventilation

Thermal buoyancy

- Predictable, well-studied, operates for hours
- Ranges from around 1 to as much 10 Pa for most systems

is available to evaporate water

Example: 2.4 m (8 ft) tall, 20C 68F in cavity 0C 32F outdoor air Pressure difference is 2.1 Pa

Measured Thermal Buoyancy Flow

- Measured cavity air velocity
- A clear 1-1/4" air space under low wind speed conditions

Popp, W., Mayer, E., Künzel, H., "Untersuchungen über die Belüftung des Luftraumes hinter vorgesetzten Fassadenbekleidung aus kleinformatigen Elementen", Fraunhofer Institut für Bauphysik, Forschungsbericht B Ho 22/80, April, 1980.

Field measurements (Finch et al)

Finch, G., Straube, J. "Ventilated Wall Claddings: Review, Field Performance, and Hygrothermal Modeling". *ASHRAE Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference*, Clearwater Beach, FL December 2007.

RDH

Ventilation airflows

Department of Civil and Environmental Engineering Architectural Engineering

Calculated Air Flow Rates

- Wall #3: 8ft high veneer, 2" deep air space, 3/8"x2.5" @ 24" o.c., top and bottom
- Wall #4: 40 ft (5 storeys) high, 2" deep air space, full-width 1/2" slot top and bottom

- Vast range of performance between common systems
- Well vented systems show 100x more flow than poorly-vented
- Vent area is the dominant factor
- Cavity depth is not a big factor

Measured Ventilation Rates

- Field measured with tracer gas
- Slot vents, ¾" cavities
- Intentional ventilation results in around 1

Bassett, M.R. and McNeil, S., 2006. Measured ventilation rates in water managed wall cavities. In *Research in Building Physics and Building Engineering* (pp. 403-410). CRC Press.

Ventilation to bypass Cladding

- Many modern panel claddings are vapor impermeable
 - Steel, alu, HDL
- Ventilation allows vapor to bypass vapor resistant cladding
- Very little ventilation is required to do this

Building ventilated systems

Department of Civil and Environmental Engineering Architectural Engineering

Ventilation Gaps

Ventilation Gaps

- Holes in horizontal girts are flow restrictions
- May allow enough airflov

Air gap / cavity examples

Vent openings

Small vents, but can be somewhat meaningful

Open Joints = Large Vent Openings

- Highly Ventilated!
- Hardly worth calculating

Ventilation Openings are Often Blocked

• Investigate specific systems, many have poor vents

Joints are not always vent openings

Joints are not always vent openings

Vent holes

- If used, usually biggest resistance to air flow
- Vents control ventilation and pressure equalization performance

Weep Hole in Bottom of ACM Panel

Unvented Metal Cladding

- Metal is a perfect vapor barrier
- Often not intentional ventilated
- During cold weather
 - condensation occurs on back of cold impermeable metal
 - When warmed above freezing, condensate runs down by drainage
 - "weeps" out at bottom
- Ventilation would be better, but...

Department of Civil and Environmental Engineering Architectural Engineering

Some conclusions

- We can calculate and roughly predict ventilation flow
- Ventilation flow is resisted by both vents and gaps
- Vents seems to be much more important and significant
- Larger gaps are more important for Dimensional Tolerances
- We don't have very much detailed information about common vents, drainage mats, etc.

Practical Implications

• Not all systems <u>need</u> ventilation

... but it is almost always helpful for rainscreen walls

- Required amount of ventilation for benefit varies
 Moisture sensitive claddings benefit the most
- Both vent <u>openings</u> and <u>gap</u> must be considered
- Many current systems have very small vent openings

Questions?

Department of Civil and Environmental Engineering Architectural Engineering

Vented vs Ventilated

• Both have air gaps, both are drained

RDH