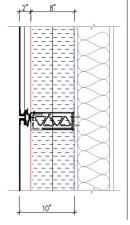




Case Study: 825 Pacific Artist Hub

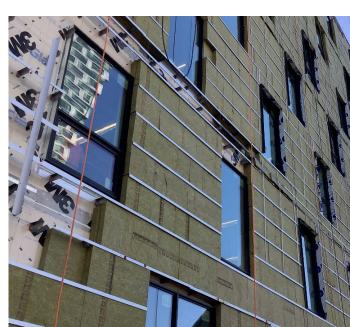
Building Enclosure Façade: What did it take?

- Windows: R-7.8 effective (installed window average)
 - Cascadia Universal Series PH (cool temperate)
- Walls Above Grade: R-42 effective (clear field)
 - 17-inch total thickness
- Optimized Thermal Bridge Detailing
- Airtightness: 0.19 ACH @ 50 Pa

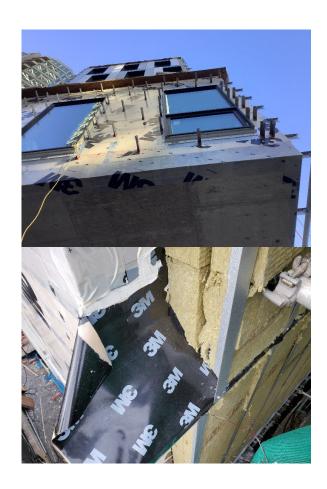


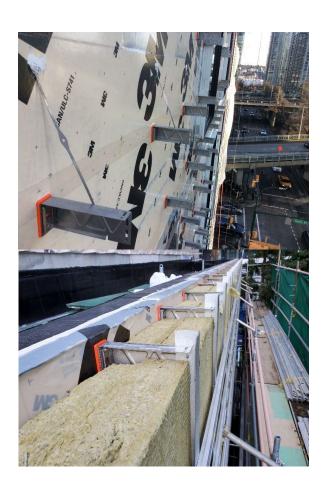
Building Enclosure Façade: Walls Above Grade **Walls Above Grade:** R-42 effective (clear field)

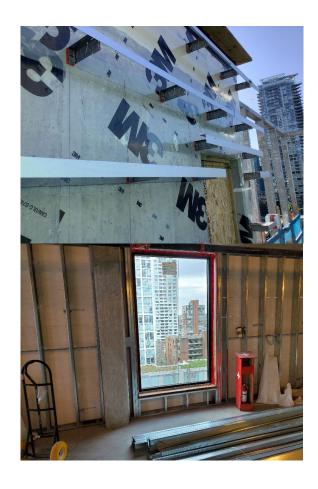
 8-inch exterior mineral wool insulation (Rockwool CavityRock)

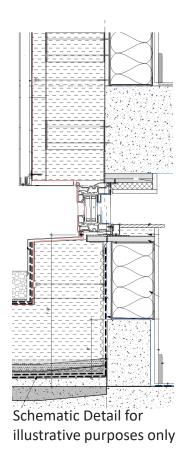

• EJOT K1 200 Crossfix (bracket) w/ horizontal cladding attachment system

 R-22.5 mineral wool batt insulation (Rockwool ComfortBatt) in steel stud cavities

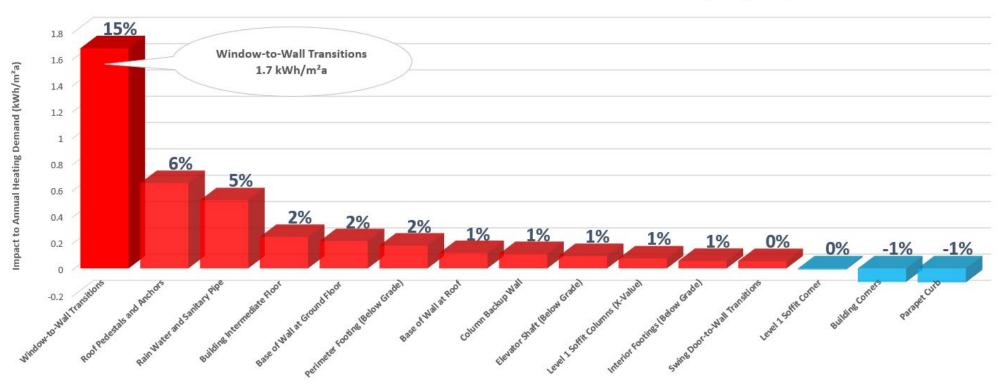



- FLYNN FR CORE ALUMINUM COMPOSITE PANEL SYSTEI
 FINISH: PER ELEVATIONS AND GENERAL NOTES.
- 16GA GALVALUME 2" X 2" CONTINUOUS HORIZONTAL ANGLE
- W/ 8" EJOT THERMAL CLIP (CLIP @ EVERY OTHER STUD (32") HORIZONTALLY, @
 24" O/C. VERTICALLY) ALSO SEE PAGE 002 FOR FIXING POINT LOCATION.
- 2 LAYERS OF 4" CAVITY ROCK DD SEMI-RIGID INSULATION (8" OVERALL TOTAL DEPTH) C/W 1" STRAPPING TO HOLD INSULATION IN PLACE (IN LIEU OF TYPICAL STICK PINS)
- MEMBRANE 3M 3015 NON VP

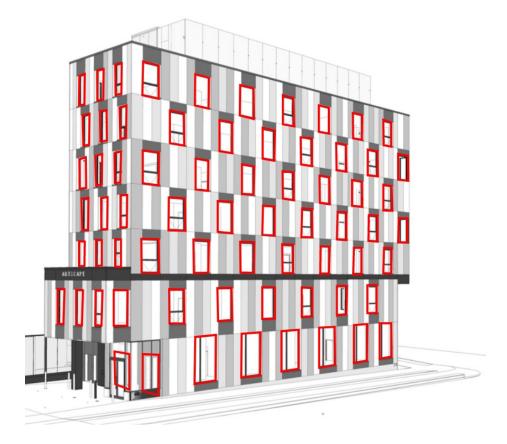

%" EXTERIOR GRADE CYPSUM SHEATHING (BY OTHERS)
6" STEEL STUDS (16GA. MIN. REQD) @ 16" O/C (TO BE CONFIRMED) (BY OTHERS)
W/ MINERAL BATT INSULATION R22 (BY OTHERS)
%" GWB SHEATHING (BY OTHERS)

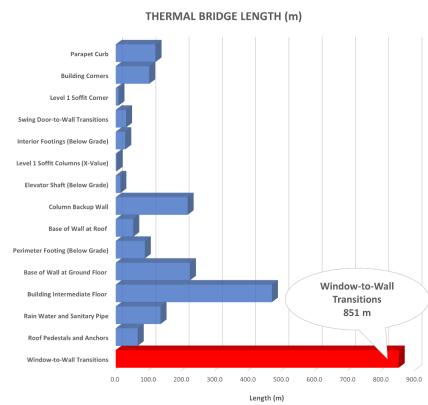

Building Enclosure Façade: Walls Above Grade

Building Enclosure Façade: Windows



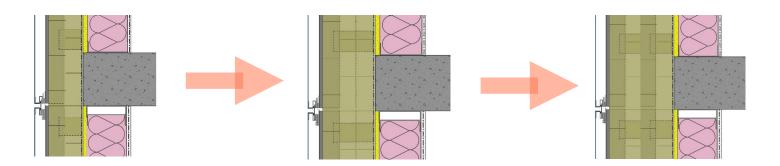
Building Enclosure Façade: Thermal Bridging Heat Loss


Where are the high impact thermal bridges?



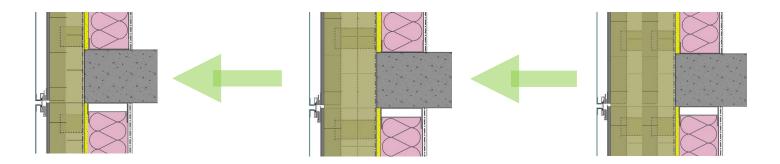
Building Enclosure Façade: Thermal Bridging Heat Loss

• Where are the high impact thermal bridges?

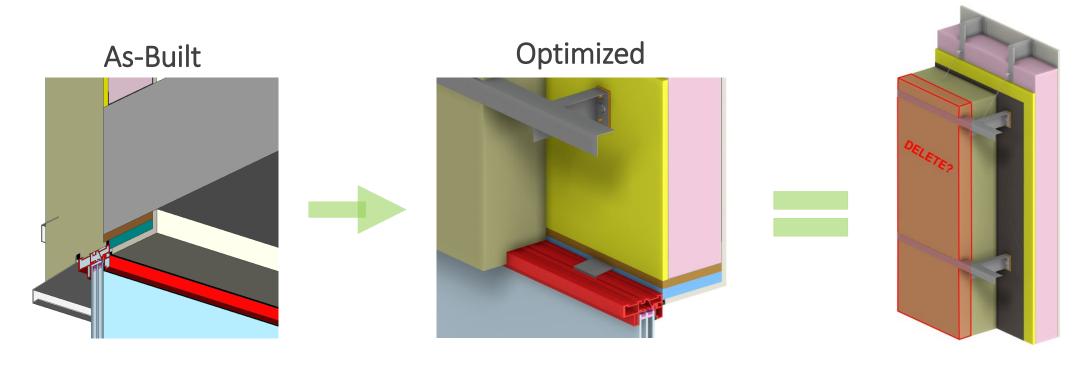


The Problem: Common Energy Conservation Measure (ECM)

Adding excessive insulation to external walls to compensate for heat loss borne from high impact thermal bridges – is this the best ECM approach?


- Lowering operational carbon, while increasing embodied carbon
- Potentially diminishing marketable floor area due to thicker walls

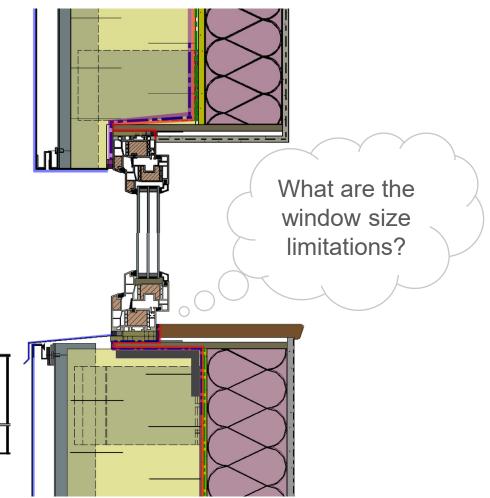
The Solution: Effective Energy Conservation Measure (ECM)


How to make high-rise Passive House walls thinner:

- Eliminate conservative assumptions at high impact thermal bridges
- Allocate resources to optimize high impact thermal bridges

Objective

Determine if the high impact thermal bridges at window-to-wall transitions can be optimized to provide a trade-off opportunity with the external walls to reduce its 17-inch thickness

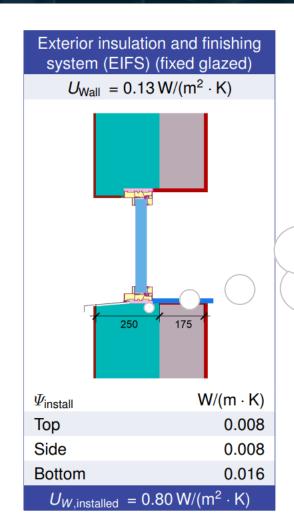


How do you optimize a window installation?

What reference documents are publicly available?

1. ThermalEnvelope.ca – Detail 5.3.22

Ψ _{Head}	Ψsill	Ψ _{Jamb}
Btu/ft ⋅hr ⋅∘F	Btu/ft ·hr ·ºF	Btu/ft ·hr ·ºF
(W/m K)	(W/m K)	(W/m K)
0.027 (0.047)	0.057 (0.099)	0.063 (0.109)

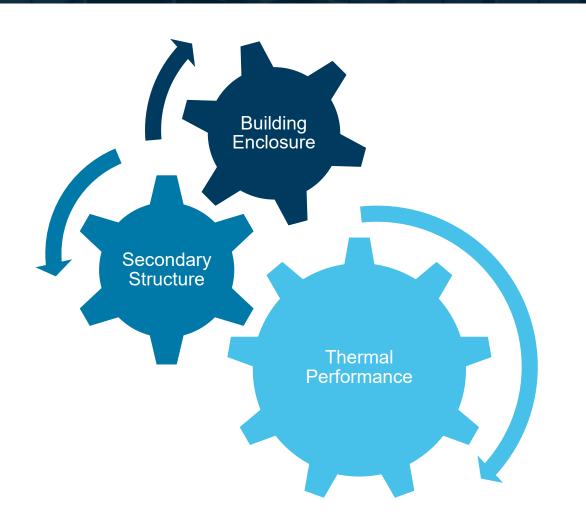


How do you optimize a window installation?

What reference documents are publicly available?

- 1. ThermalEnvelope.ca Detail 5.3.22
- 2. PassiveHouseComponents.org Component-ID 1256fx03

Is the thermal bridge reference acceptable to the Passive House Building Certifier?



How is this window structurally supported?

How do you optimize a window installation?

Solution if reference documents are not available:

 Retain qualified consultant team to develop a solution customized to suit your project

2023 BC Housing Building Excellence Research & Education Grant

How do you optimize a window installation?

Morrison Hershfield (now Stantec) was awarded a Building Excellence Research & Education Grant from BC Housing in March 2023 to develop high-performance window-to-wall transition details intended for use in larger low energy/low carbon buildings in all climate zones within BC to be added to ThermalEnvelope.ca

Building Excellence Research & Education Grants

2023 BC Housing Building Excellence Research & Education Grant

Project Team

Inventor: Cody Akira Belton, AScT, PTech, CPHD: Passive House Specialist & Building Enclosure Consultant

Jameson H. Vong, P.Eng.: Building Envelope Specialist & Technical Manager

Brett Pattrick, P.Eng.: Façade Specialist & Secondary Structures Team Lead

Qing Li, E.I.T.: Façade Consultant

Ivan Lee, P.Eng., M.A.Sc., LEED AP BD+C: Building Science Engineer & Building Performance Analysis Team Lead

Enclosure

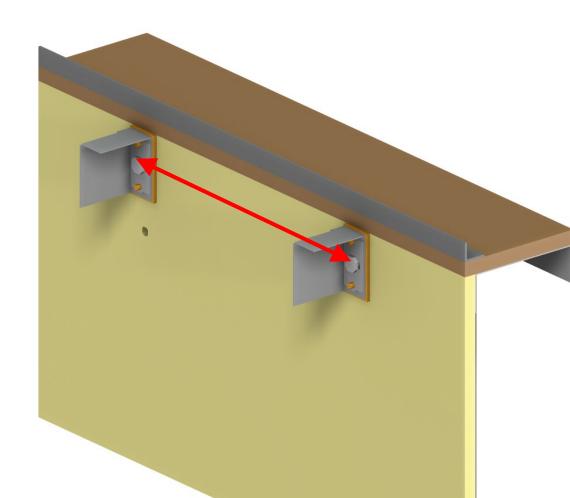
Secondar\

Structure

Felipe Merino Gordo, M.A.Sc.: Building Science Consultant

Shahima Rahmatipour, M.Sc., P.Eng., PMP, CEM: Building Science Consultant

AKIRA WINDOW CONNECTION steel stud backup wall option



Akira Window Connection Steel Stud Backup Wall Option @ Window Sill

Structural Analysis:

Table 1: Akira Window Connection by MH Dead Load Support System Maximum Intermittent Bracket Spacing

Window Height (inch)		48	84	115	144
Window Dead Load Support System Max.	Without Wood Blocking at Steel Studs	32	32	24	16
Intermittent Bracket Spacing (inch)	With Wood Blocking at Steel Studs	32	32	24	24

Akira Window Connection Steel Stud Backup Wall Option @ Window Sill

Structural Analysis:

ADD (1) EXTRA STRAP
ANCHOR ® TOP OF
VERTICAL COUPLER

1/2' 48' HD 1/2'

36' 48' TOP OF
VERTICAL COUPLER

49' 80

1/2' 48' HD 1/2'

51

G1 51

51

G1 52

52

52

57° NO 1/2" 58° HD 1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

Dimension

Less Than 10
Storey (<30 m)
Wind Load:
30 PSF
Width (inch)
Unlimited

Height (inch)

144

Less Than 30
Storey (<100 m)
Wind Load:
40 PSF

40 PSF

110

144

For Building

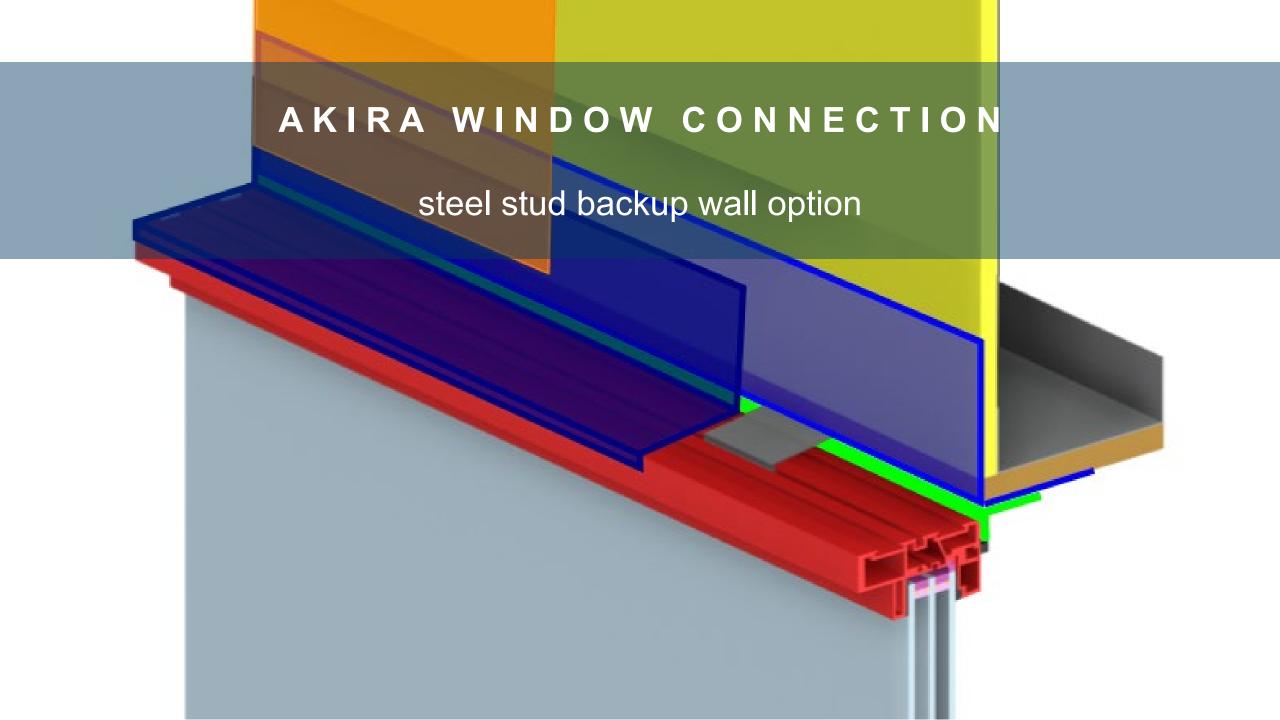
Table 2: Akira Window Connection by MH Maximum Window Size

For Building

For Building

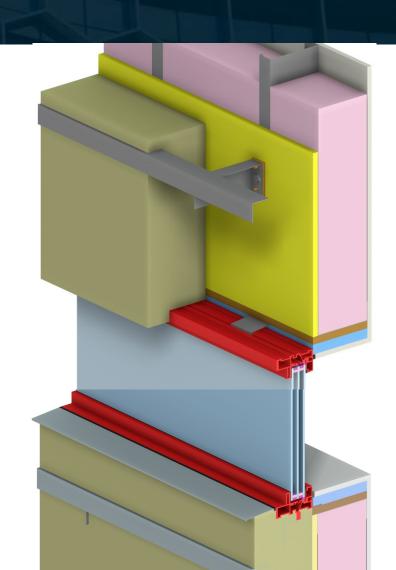
Less Than 50

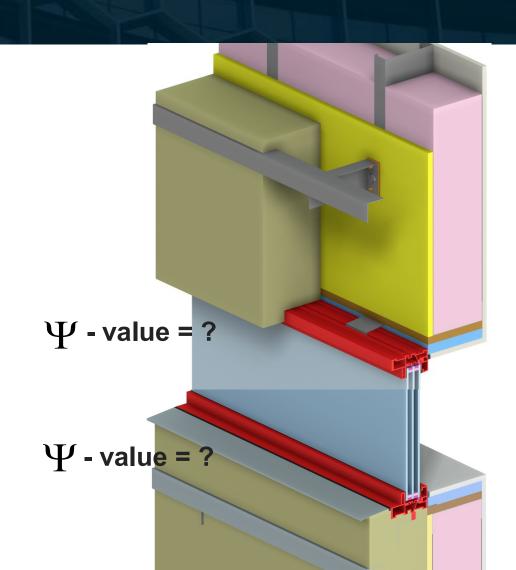
Storey (<150 m)


Wind Load:

50 PSF

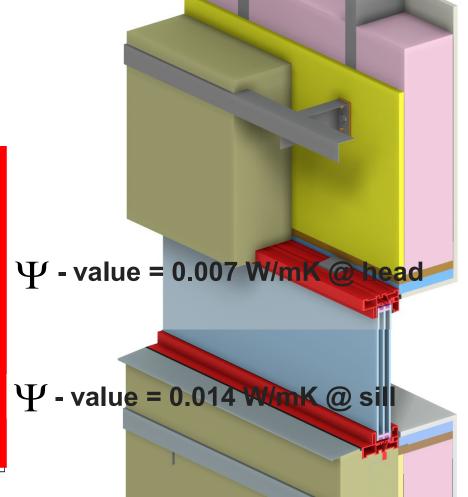
90


144


Optimized Window Install

- 1. Q: What is the impact to energy performance?
- 2. Q: Does window install provide design flexibility?

Optimized Window Install


- 1. Q: What is the impact to energy performance?
- 2. Q: Does window install provide design flexibility?

Optimized Window Install: Thermal Bridging Heat Loss Effect

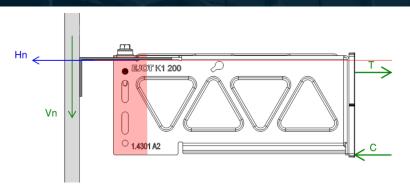
Table 4: Akira Window Connection Thermal Bridge Psi-values at Window Transitions

Location	Window Position Description	Window Dead Load Support System	Exterior Wall Material Description	Transmittance Type	ψ-value (W/mK)
Akira Window Connection @ HEAD	window frame interior edge aligned with wall sheathing exterior	continuous angle + intermittent brackets	7-inch mineral wool with 7-inch bracket	linear thermal bridge	0.007
Akira Window Connection @ JAMB	window frame interior edge aligned with wall sheathing exterior	continuous angle + intermittent brackets	7-inch mineral wool with 7-inch bracket	linear thermal bridge	0.019
Akira Window Connection @ SILL	window frame interior edge aligned with wall sheathing exterior	continuous angle + intermittent brackets	7-inch mineral wool with 7-inch bracket	linear thermal bridge	0.014

Optimized Window Install: Thermal Bridging Heat Loss Effect

Energy conservation savings (buffer) = more design flexibility

 Table 5: Akira Window Connection Energy Performance Comparison


Scenario	PER Demand Effect compared to As-Built (kWh/m²a)	Space Heating Demand Effect compared to As-Built (kWh/m²a)	Space Heating Load Effect compared to As-Built (W/m²)	Space Cooling & Dehum. Demand Effect compared to As-Built (kWh/m²a)	Space Cooling Load Effect compared to As-Built (W/m²)	Heating Period Window Energy Balcance compared to As-Built (kWh/a)	Passive House Classic?
Akira Window Connection (7-inch ext. insulation)	-0.40	-0.86	-0.32	0.30	0.24	-3138	YES
Akira Window Connection (6-inch ext. insulation) ¹	0.18	0.29	0.19	0.24	0.25	-3289	YES

Note:

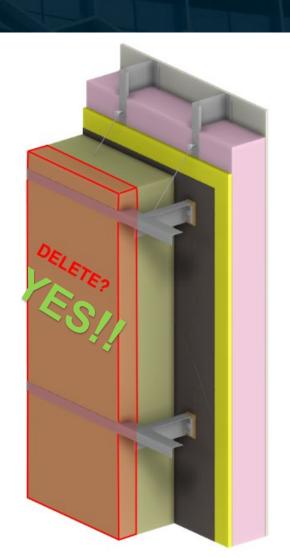
^{1.} Psi-values at window transitions with 6-inch and 8-inch exterior insulation at walls assumed to match psi-values for scenario with 7-inch exterior insulation.

Optimized Window Install: Thermal Bridging Heat Loss Effect

- Energy conservation savings (buffer) = more design flexibility
- Alternate wall design with reduced insulation potential benefits:
 - Decrease wall thickness
 - Increase cladding attachment options
 - Decrease embodied carbon emissions
 - Decrease wall construction costs

Optimized Window Install: Thermal Bridging Heat Loss Effect

Total Cost Analysis:

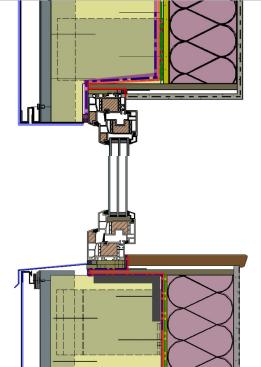

Table 7: Akira Window Connection & Exterior Wall Material Cost Comparison

Scenario	Window Position Description	Window Dead Load Support System	Window Dead Load Support System Material Cost ¹	Exterior Wall Material Description	Exterior Wall Material Cost	Total Material Cost	Cost Savings Compared to As-Built
As-Built (8-inch ext. insulation)	window frame interior edge recessed 16 mm into rough opening	2"x3"x0.125" aluminum angle	\$2,637	8-inch mineral wool with 8-inch bracket	\$252,297	\$254,934	
Akira Window Connection (7- inch ext. insulation)	window frame interior edge aligned with wall sheathing exterior face	2"x2"x0.05" galvanized steel + intermittent metal brackets	S5 509	7-inch mineral wool with 7-inch bracket	\$228,114	\$233,623	\$21,311
Akira Window Connection (6- inch ext. insulation)	window frame interior edge aligned with wall sheathing exterior face	2"x2"x0.05" galvanized steel + intermittent metal brackets	\$5,509	6-inch mineral wool with 6-inch bracket ²	\$202,672	\$208,180	\$46,75

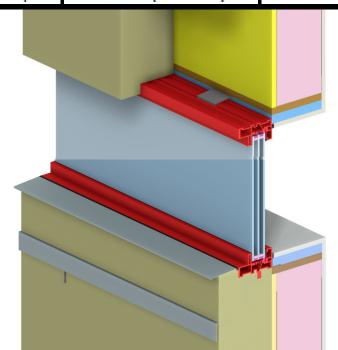
Optimized Window Install: Akira Window Connection

Research Findings Summary:

- Decrease external wall thickness → 2-inch
 - Walls Above Grade: R-42 R-33 effective (clear field)
 - 17-inch 15-inch total thickness
- Decrease embodied carbon → 5.3 imperial tons of carbon dioxide equivalent
- Decrease exterior wall insulation and cladding bracket size → \$46.7K CAD (\$35K USD) savings in material


Constructability

Detail 5.3.22


Detail	5.3	26

ΨHead	Ψsill	ΨJamb
Btu/ft ⋅hr ⋅ºF	Btu/ft ⋅hr ⋅∘F	Btu/ft ⋅hr ⋅∘F
(W/m K)	(W/m K)	(W/m K)
0.027 (0.047)	0.057 (0.099)	0.063 (0.109)

Ψh	ψι	Ψi
Btu/ft ⋅hr ⋅ºF	Btu/ft ⋅hr ⋅ºF	Btu/ft ⋅hr ⋅ºF
(W/m K)	(W/m K)	(W/m K)
0.004 (0.007)	0.008 (0.014)	0.011 (0.019)

VS.

ThermalEnvelope.ca – Detail 5.3.26

Appendix A: Catalogue Material Data Sheets

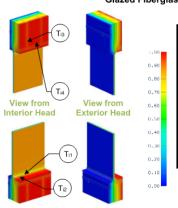
BUILDING ENVELOPE THERMAL BRIDGING GUIDE v1.8

Detail

Akira Window Connection at Exterior Insulated Steel Stud Wall Assembly, 6" Steel Stud (16" o.c.), Fiberglass in cavity - Triple Glazed Fiberglass Window Intersection

[24] Jamb Detai

[7] Head Detail


ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft²·hr·°F (W/m K)	Nominal Resistance hr·ft²-ºF/Btu (m²K/W)	Density Ib/ft³ (kg/m³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film ¹	-	-	R-0.7 to R-1.1 (0.12 RSI to 0.20 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	Fiberglass Batt in Stud Cavity	6" (152)	0.30 (0.043)	R-20 (3.52 RSI)	0.075 (1.2)	0.24 (1000)
4	6" x 1 5/8" Steel Studs with Tracks	18 Gauge	430 (62)	-	489 (7830)	0.12 (500)
5	Exterior Sheathing	5/8" (16)	1.1 (0.16)	R-0.6 (0.10 RSI)	50 (800)	0.26 (1090)
6	Exterior Mineral Wool Insulation	7" (178)	0.24 (0.034)	R-29.4 (5.18RSI)	4 (64)	0.20 (850)
8	Intermittent metal strap anchor	18 Gauge	1110 (160)	-	489 (7830)	0.12 (500)
9, 18	Wood liner (plywood)	1/2" (13)	0.69 (0.10)	-	27.8 (445)	0.45 (1880)
10, 17	Insulation at sill, head and jamb (XPS)	1" (25)	0.20 (0.029)	-	1.55 (25)	0.29 (1220)
11, 15	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
12, 14	Fiberglass	window: triple gl	azed IGU, U _{IGU} -0.	156 Btu/hr-ft ^{2.} °F (0.888 W/r	n ² K) ²	
16	Sill Angle (Aluminum)	0.13" (3.2)	1110 (160)	-	489 (7830)	0.12 (500)
19	Thermal break (Polyamide)	0.2" (5)	2.2 (0.32)	-	69 (1100)	0.36 (1500)
20	Plastic shims (Polyethylene)	3/4" (19)	2.1 (0.3)	-	69 (1100)	0.36 (1500)
21	Intermittent brackets (stainless steel)(16* horizontal spacing)	16 Gauge	118 (17)	-	499 (8000)	0.12 (500)
22	Cladding support system (Stainless steel) (24"vertical – 36" horizontal spacing)	16 Gauge	118 (17)	-	499 (8000)	0.12 (500)
23	Flashing	14 Gauge	1110 (160)	-	489 (7830)	0.12 (500)
24	Horizontal girt that supports the window (Galvanized steel)	18 gauge	430 (62)	-	489 (7830)	0.12 (500)
25	Rail (Galvanized steel)	0.08" (2)	430 (62)	-	489 (7830)	0.12 (500)
	Cladding with	1/2" vented airsp	pace incorporated	into exterior heat transfer o	oefficient	
27	Exterior Film ¹	_		P-0.2 (0.03 PSI)		

Value selected from table 1, p. 26.1 of 2009 ASHRAE Handbook – Fundamentals depending on surface orientation

Appendix B: Catalogue Thermal Data Sheets

BUILDING ENVELOPE THERMAL BRIDGING GUIDE v1.8

Akira Window Connection at Exterior Insulated Steel Stud Wall **Detail 5.3.26** Assembly, 6" Steel Stud (16" o.c.), Fiberglass in cavity - Triple Glazed Fiberglass Window Intersection.

Thermal Performance Indicators Assembly 1D R-22.3 (3.93 RSI) (Nominal) R-Value + exterior insulation Transmittance / "clear wall" U- and R-value: Resistance without Rw, w = wall Anomaly g = glazing Surface 0 = exterior temperature Temperature Index 1 = interior temperature

Incremental increase in Transmittance h = head = sill = iamb

¹Assumptions and limitations for surface temperatures identified in ASHRAE

Exterior Sill Nominal (1D) vs. Assembly Performance Indicators

Base Assembly - Clear Wall

Interior Sill

Exterior Insulation	R _{1D}	R _w	U _w
1D R-Value	ft ² -hr-°F / Btu	ft ² -hr-°F / Btu	Btu/ft² ·hr ·°F
(RSI)	(m ² K / W)	(m ² K / W)	(W/m² K)
R-29.4 (5.18)	R-51.7 (9.10)	R-38.1 (6.70)	0.026 (0.15)

Dase Assembly - Glazing				
Ucentre of glass Btu/ft ² ·hr ·°F (W/m ² K)	U _g Btu/ft² ·hr ·ºF (W/m² K)			
0.156 (0.888)	0.110 (0.625)			

Race Accembly - Glazing

Window Linear Transmittance

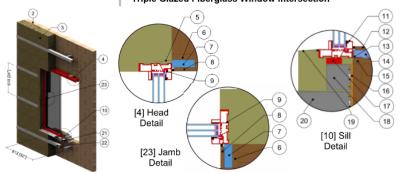
Exterior Insulation	Ψ ^h	Ψι	Ψյ
1D R-Value	Btu/ft ·hr ·°F	Btu/ft ·hr ·°F	Btu/ft ⋅hr ⋅ºF
(RSI)	(W/m K)	(W/m K)	(W/m K)
R-29.4 (5.18)	0.004 (0.007)	0.008 (0.014)	

Temperature Indices

	Description	Head	Sill	Jamb
Tit	Min T on window glass, next to frame	0.75	0.74	0.76
T _{i2}	Min T on window frame, next to head, sill or jamb	0.83	0.81	0.82
T _{i3}	Min T on wall, at studs		0.94	0.95
Ti4	Max T on wall, between studs at head or sill	1.00	1.00	0.99

² The thermal conductivity of air spaces within framing was found using ISO 100077-2

ThermalEnvelope.ca – Detail 8.3.24


Appendix A: Catalogue Material Data Sheets

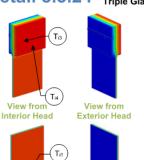
BUILDING ENVELOPE THERMAL BRIDGING GUIDE v1.8

Detail 8.3.24

Akira Window Connection at Exterior Insulated CLT back up wall

- Triple Glazed Fiberglass Window Intersection

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft²-hr-°F (W/m K)	Nominal Resistance hr·ft².ºF/Btu (m²K/W)	Density lb/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film ¹	-	-	R-0.7 to R-1.1 (0.12 RSI to 0.20 RSI)	-	-
2	CLT	3 1/2" (89)	0.83 (0.12)	R-4.2 (0.74 RSI)	50 (800)	0.26 (1090)
3	Exterior Mineral Wool Insulation	7" (178)	0.24 (0.034)	R-29.4 (5.18RSI)	4 (64)	0.20 (850)
5	Intermittent metal strap anchor	18 Gauge	1110 (160)	-	489 (7830)	0.12 (500)
6, 15	Wood liner (plywood)	1/2" (13)	0.69 (0.10)	-	27.8 (445)	0.45 (1880)
7, 14	Insulation at sill, head and jamb (XPS)	1" (25)	0.20 (0.029)	-	1.55 (25)	0.29 (1220)
8, 12	Wood trim	1/2" (13)	0.69 (0.10)	R-0.5 (0.08 RSI)	50 (800)	0.26 (109
9, 11	Fiberglass window: triple glazed IGU, U _{IGU} -0.156 Btu/hr·ft².ºF (0.888 W/m²K) ²					
13	Sill Angle (Aluminum)	0.13" (3.2)	1110 (160)	-	489 (7830)	0.12 (500
16	Thermal break (Polyamide)	0.2" (5)	2.2 (0.32)	-	69 (1100)	0.36 (150
17	Plastic shims (Polyethylene)	3/4" (19)	2.1 (0.3)	-	69 (1100)	0.36 (150
18	Intermittent brackets (stainless steel)(16" horizontal spacing)	16 Gauge	118 (17)	-	499 (8000)	0.12 (500
19	Flashing	14 Gauge	1110 (160)	-	489 (7830)	0.12 (500
20	Cladding support system (Stainless steel) (24"vertical – 36" horizontal spacing)	16 Gauge	118 (17)	-	499 (8000)	0.12 (500
21	Horizontal girt that supports the window (Galvanized steel)	18 gauge	430 (62)	-	489 (7830)	0.12 (500
22	Rail (Galvanized steel)	0.08" (2)	430 (62)	-	489 (7830)	0.12 (500)
	Cladding with 1/2" vented airspace incorporated into exterior heat transfer coefficient					
24	Exterior Film ¹	-	-	R-0.2 (0.03 RSI)	-	-


¹ Value selected from table 1, p. 26.1 of 2009 ASHRAE Handbook – Fundamentals depending on surface orientation

² The thermal conductivity of air spaces within framing was found using ISO 100077-2

Appendix B: Catalogue Thermal Data Sheets

BUILDING ENVELOPE THERMAL BRIDGING GUIDE v1.8

Detail 8.3.24 Akira Window Connection at Exterior Insulated CLT back up wall – Triple Glazed Fiberglass Window Intersection

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-5.57 (0.98 RSI) + exterior insulation			
Transmittance / Resistance without Anomaly	U _{w,} R _{w,} U _{g,}	"clear wall" U- and R-value: w = wall g = glazing			
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature			
Linear Transmittance	ψh, ψι, ψj,	Incremental increase in transmittance per linear length of: h = head l = sill j = jamb			

'Assumptions and limitations for surface temperatures identified in ASHRAE 1365-RP

Nominal (1D) vs. Assembly Performance Indicators

Base Assembly - Clear Wall

Interior Sill

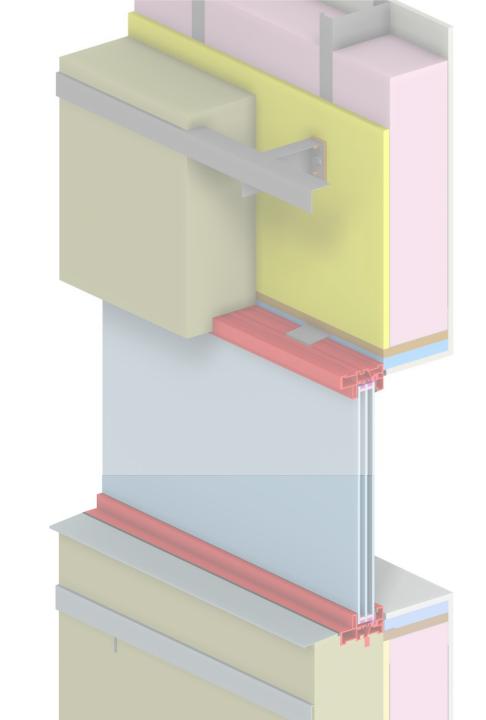
Exterior Insulation 1D R-Value (RSI)	R _{1D} ft²⋅hr.ºF / Btu (m² K / W)	R _w ft²-hr.∘F / Btu (m² K / W)	U _w Btu/ft² ·hr ·°F (W/m² K)
R-29.4 (5.18)	R-5.6 (0.98)	R-32.3 (5.70)	0.031 (0.18)

View from

Exterior Sill

Base Assembly - Glazing

U _{centre of glass}	U _g
Btu/ft ² ·hr ·°F	Btu/ft² ·hr ·°F
(W/m ² K)	(W/m² K)
0.156 (0.888)	0.110 (0.625)


Window Linear Transmittance

Exterior Insulation 1D R-Value (RSI) Wh Btu/ft ·hr ·°F (W/m K)		Ψι Btu/ft ·hr ·°F (W/m K)	Ψi Btu/ft ·hr ·°F (W/m K)
R-29.4 (5.18)	0.0008 (0.001)	0.004 (0.006)	0.004 (0.007)

What's next?

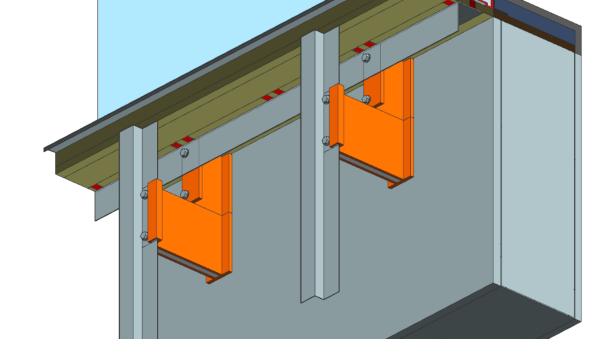
Detailing Akira Window
 Connection into your next project

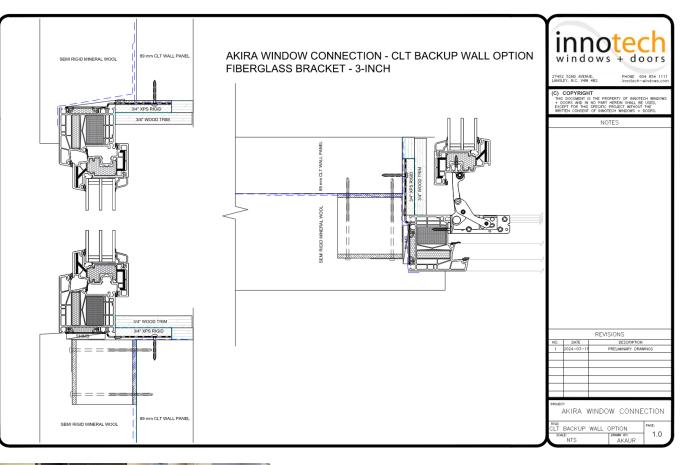
- new construction
- retrofits
- prefabricated wall systems
- modular systems

Structural Analysis

- Akira Window Connection with Cascadia Clip
 - 16 Ga. Steel Stud Wall
 - 18 Ga. Steel Stud Wall
 - 6-inch Concrete Wall

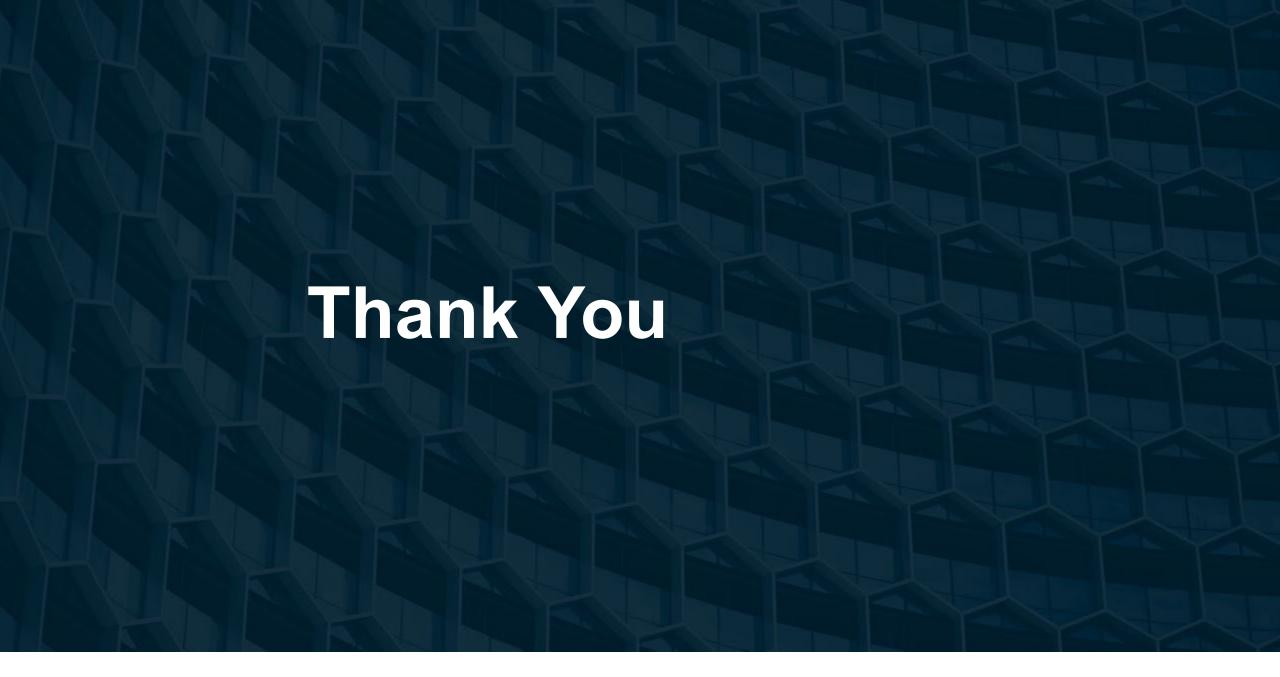
 Thermal Analysis for all backup wall types are in progress for head, jamb and sill




Table 3 Maximum Window Height

Maximum Window Height (in)						
	Dead Load (PSF)	Clip Horizontal Spacing (in)				
Backup Wall Type		16	24	32		
16 Ga. Steel Stud	12	204	136	102		
18 Ga. Steel Stud	12	134	89	67		
Concrete Wall	12	192	128	96		

The table is intended to be used for estimation purposes only. Project-specific engineering to be performed for all projects and the responsibility for the design shall remain with the Engineer of Record for each specific project.


Mass Timber Mock-up

- Akira Window Connection with Defender PH88+ PRO (tilt & turn) by Innotech Windows + Doors
 - CLT wall mock-up will be on display at the International Mass Timber Conference in Portland, OR

National institute of Building Sciences 1090 Vermont Avenue NW, Suite 700 Washington, DC 20005 (202) 289-7800 nibs@nibs.org