BEST6

Indoor Air Quality Challenges with Central DOAS and Opportunities for Demand Controlled Ventilation

Niloufar Ghazanfari, Georg Reichard

1 Doctoral Student, Building Construction, Virgina Tech University

2 Professor and Department Head, Building Construction, Virgina Tech University

Case Study: Bishop-Favrao Hall (BFH), Classroom Hall 210

March 29, 2024

Building Enclosure Science and Technology

BEST6

Floor Plans Bishop-Favrao Hall Classrooms

Designated Points of CO2 Concentration Measurement

Floor Plans Bishop-Favrao Hall Classrooms

BEST6 Air Ducts Distribution on Ceiling

Case Study: Bishop-Favrao Hall (BFH), Classroom Hall 210

Indoor Air Quality Guideline Values for CO2 vs Health Effects (López et al., 2023)

Health

Effective Healthy Ventilation Systems

В

The Most Energy-Efficient Ventilation Systems

□ Heat Recovery Ventilation (HRV)

□ Energy Recovery Ventilation (ERV)

Demand Controlled Ventilation (DCV)

Demand Control Strategies

CO2 Concentration Levels Over a Week

CO2 Concentration Levels Over Weekdays

Examples for Monday / Tuesday

CO2 Concentration Levels Over Weekdays

Examples for Thursday / Friday

Average and Peak Load Measurements

POINTS	1L	1H	2L	2H
MEAN (Occupied), PPM	507	525	568	542
MIN (Non-Occupied) CO2*, PPM	450	-	423	417
MAX ,PPM	1400	1150	1750	1450
Time of MAX values	MON 10:14	WED 14:27	MON 13:18	MON 14:10
% Percentage of Non-acceptable values (>1000)	%1	%1	%9	%5
% Percentage of Non-ideal values for cognitive performance (>750)	%7	%10	%15	%14

The average outdoor CO2 concentration is 430 (ppm).

The Concerning CO2 Concentration Level:

The maximum (critical days) for the points 1H, 2L, and 2H

Concerning CO2 Concentration Levels

The maximum (critical days) for the points 1H, 2L, and 2H

0.0

-Wee - Weel Wee Wee - Wee - Weel - Weel - Wee Wed. Thurs. Fri. Mon. Tues. Sat. Sun. DAYS

16

00:00 AM

Workdays Overlays at the Critical Point (2L)

Similar pattern on each workday

Overlay of CO2 concentrations on same weekday

Used for development of load schedules for building systems simulations

CO2 - Point 2L (THURSDAYS)

Building Performance Simulations

OpenStudio & EnergyPlus Modeling

12 different Space Types

30+ Thermal Zones

40+ FCUs / CUH / UH

Calibration and Analysis on Reduced Model

CO2 Analysis can be easily extracted

Dedicated Outdoor Air System (DOAS) with preconditioned constant-volume (CV) fresh air supply

Single-zone problem with occupancy-driven fresh air demand

Transposing CO2 measurements into Occupancy Schedules

CO2 "Load Profile" measured in-situ over 10 weeks

Prescriptive Occupancy Schedule as "CO2-Load"

Ventilation Heating/Cooling Load Increase

Demand Criteria Towards Specific Space Needs in Net-Zero High-Performance Buildings

Thank You