

Deep Green, Net Zero, Market Rate

How ASHRAE'S New Global Headquarters Renovation Achieved All Three

Gregory Walker, AIA, LEED AP Stanton Stafford, PE, LEED FELLOW

ASHRAE is:

American Society of Heating, Refrigerating and Air-Conditioning Engineers

Professional Organization supporting engineers, contractors, manufacturers, and others in industry.

57,000 members in 132 countries, Headquartered in Atlanta, GA since 2010

A diverse industry leader dedicated to advancing the arts and sciences of HVACR, to creating standards and guidelines involving building systems, energy efficiency, indoor air quality, and to promoting a sustainable world.

Project Background:

ASHRAE made a commitment to sell their existing property in late 2018.

Design Team was hired Feb. 2019

CM was hired April 2019

Project had to be completed October 2020.

ASHRAE had a commitment to renovate an existing office building from the 1970's/1980's.

PROJECT 'MUST HAVE' CRITERIA

Safety – safe work environment and construction

Affordable – to be constructed within the available budget.

Exceed the requirements of ASHRAE Standards 90.1-2016 (Energy Efficiency), 62.1-2016 (IAQ), 55-2017 (Thermal Comfort)

Meet acoustic requirements of "Sounds Matter", produced by GSA. Office space to also exceed the acoustic requirements listed in the latest ASHRAE HVAC Applications Handbook by 3 to 5 NC/RNC

Net Zero Energy, Building EQ rating 100

PROJECT 'HIGHLY DESIRABLE' CRITERIA

Exceed the requirements of ASHRAE Standard 189.1-2017 (High Performance Buildings)

A maximum energy consumption of 21.4 kBtu/SF/yr.

Limit maximum daytime plug load to 0.5 W/SF

Deliver Outside Air at a value of at least 1.3 times the requirements of Std. 62.1 OA (Air Quality) to regularly occupied areas and use Demand Controlled Ventilation (DCV) for high occupancy spaces

Achieve Spatial Daylighting Autonomy (SDA) which assures the vast majority of occupants have a generous level of daylighting in their work space 55% of the time

Achieve Resiliency at a level established by ASHRAE.

Achieve a Plug Load < 0.4 w/sf

Achieve a demand side EUI < 15 kBtu/SF/yr

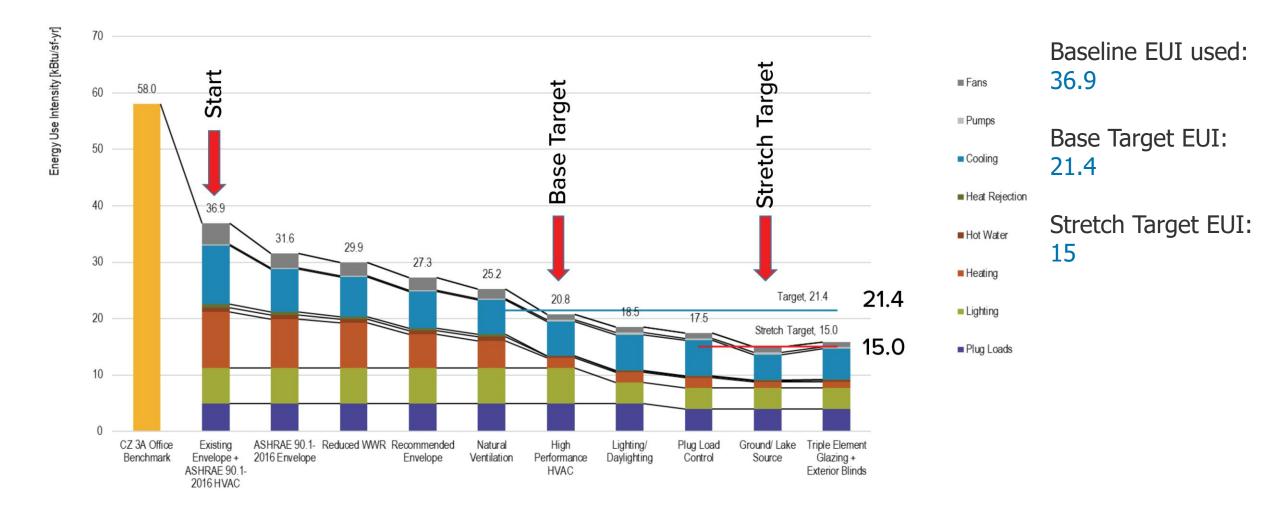
PATH TO NET ZERO

Seek to reduce the load demand as much as possible.

Our general design approach was:

Create a high performance exterior envelope

Utilize a high efficiency HVAC system

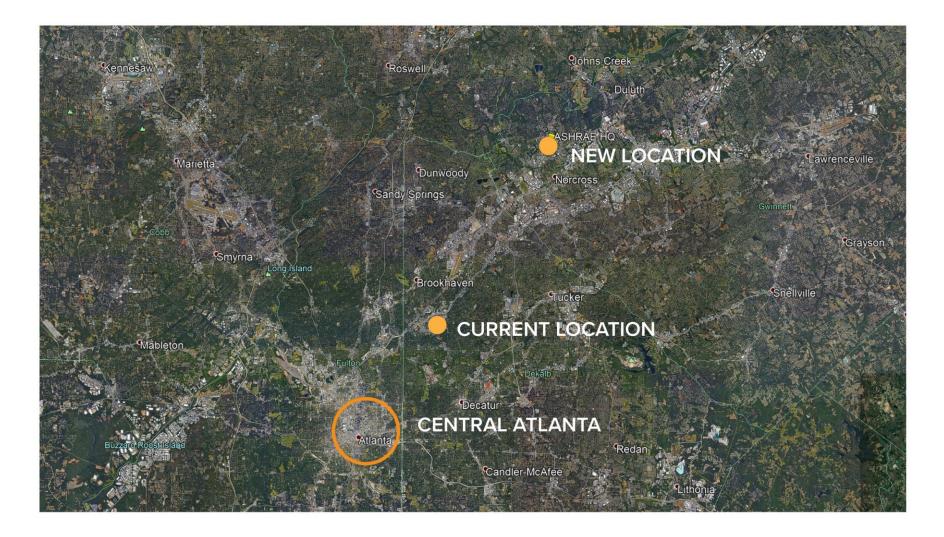

Provide for long term program flexibility

Run analytics throughout the process to check and re-check

Right-size the PV array and backup.

During construction - constant monitoring and testing Post occupancy - constant monitoring and adjusting

ENERGY USAGE INTENSITY (EUI) - REDUCING DEMAND



RIGHT STEPS IN THE RIGHT ORDER

Baseline Analysis Climate Analysis Envelope Design Systems Design Energy Supply Testing and Monitoring Post-Occupancy Operations Conclusions

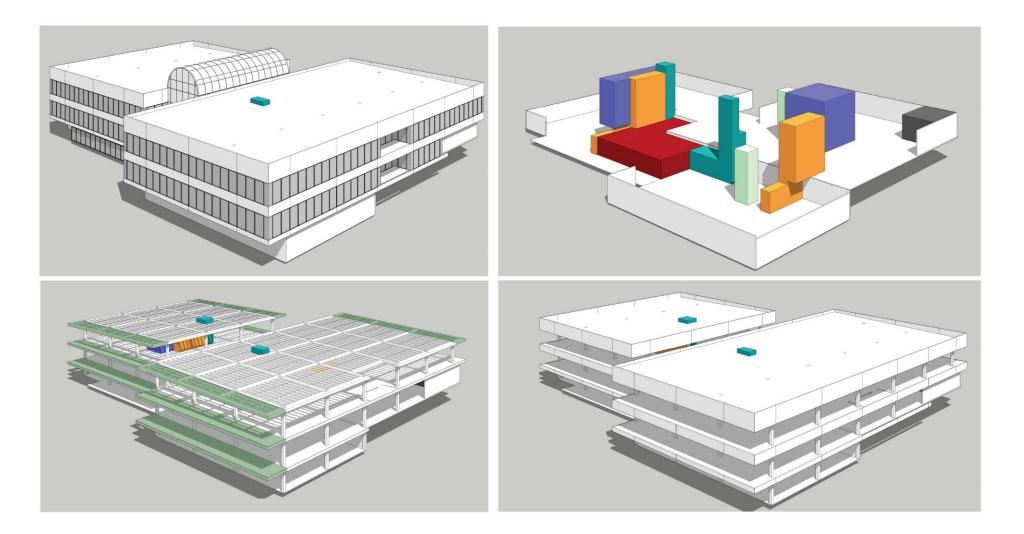
HQ LOCATION - OLD AND NEW

HQ LOCATION - 180 TECHNOLOGY PARKWAY

ACCESSIBILITY -CAR, BUS, BIKE

GAS EASEMENT

LAKE


TREE CANOPY

EXISTING STRUCTURE

180 Technology Parkway, Peachtree Corners, GA Site is 10.7 ac., 64,300 sq. ft. building over 2.5 stories Built in mid to late 1970's - purchased in 2018

EXISTING BUILDING

ENERGY MODEL INPUT ASSUMPTIONS

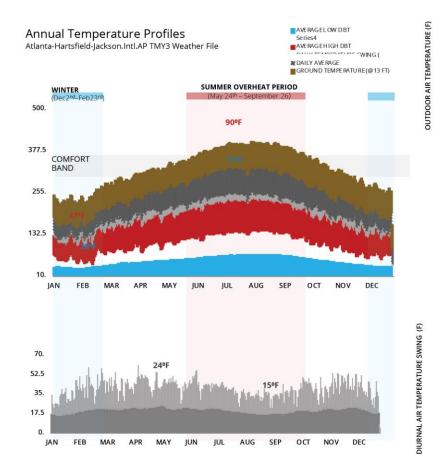
General Parameters		Envelope	Existing	90.1-2016	Recommended	HVAC System Parameters					
Project / Building	ASHRAE HQ		10.000.020			System Description	VAV PFP Boxes	(77)	· =		
)ccupancy	Office	Wall Assembly	U-0.3 (R-3.0)	U-0.122 (R-8.0)	U-0.058 (R-17)	Total Static Pressure	Supply/Exhaust	in	4" / 1"		
ocation	Altanta, GA		()	(()	Fan Min Turn Down		%	10%		
eather File	Atlanta, GA	Deef	110.047	11.0.020	11 0 000	Ventilation Airflow		cfm	8,317		
imate Zone	ASHRAE 3A	- Roof Assembly	U0.047 (R-21)	U-0.039 (R-25)	U-0.028 (R-35)	Total Airflow Capacity (Existing)	-	cfm	72,861		
						Total Airflow Capacity (ASHRAE 90.1- 2016)	Ξ	cfm	54,061		
		Window	U-0.59	U-0.45	U-0.40	Demand Control Ventilation	None	-	a .		
		Assembly	SHGC-0.52	SHGC-0.25	SHGC-0.25	Airside Economizer	Dry-bulb High Limit	°F	65°F		
						Airside Heat Recovery	Sensible Eff / Latent Eff	%	50% / 50%		
		Window to				Cooling Coil	DX Cooling Coil	EER	9.5		
		Wall Ratio	~50%	40%	40%	Heating Coil	Electric Resistance	%	100%		
	-					Reheat Coil	Electric Resistance	%	100%		
		External			1' (to be further	Supply Air Temperature	-	°F	55°F		
		Shade	N/A	N/A	optimized for	Supply Air Control	Warmest Zone Reset	°F	10°F		
		Depth			visual, thermal comfort)	Domestic Hot Water					
						System Description	Electric Resistance	-	-		
		Infiltration	0.0448 cfm/ft ²	0.0448 cfm/ft ²	0.0112 cfm/ft ²	DHW System Efficiency	-	%	98%		
			chillite	cmint	cillite	DHW Supply Water Temperature	-	°F	140°F		
	*	-				DHW Delta-T Water Temperature	-	°F	30°F		

Space Type Inputs	Internal Load Parameters						Thermal Zone Parameters									
Ѕрасе Туре	Area [SF]	Area in Model [%]	# People	Area/person [SF/Person]	People/Area [Person/SF]	Lighting [W/SF]	Eqp Load [W/SF]	DHW [gal/hr/p]	DHW [gpm]	OA Rate [CFM/S F]	OA Rate [CFM/P]	OA Rate [CFM]	TStat Clg [deg F]	TStat Htg [deg F]	Clg Setback [deg F]	Htg Setback [deg F]
Office	65,914	97%	132	500	0.0020	0.637	0.5	0.18	0.4	0.078	6.5	5,998	75	70	80	60
Atrium	1,885	3%	283	6.67	0.1499	0.390	0.5	0	0.0	0.078	6.5	1,984	75	70	80	60
Lobby	318	0%	48	6.67	0.1499	0.585	0.5	0	0.0	0.078	6.5	335	75	70	80	60
TOTAL	68,117		462	147	0.0068	0.6	0.5		0.4			8,317				

RIGHT STEPS IN THE RIGHT ORDER

Baseline Analysis Climate Analysis Envelope Design Systems Design Energy Supply Testing and Monitoring Post-Occupancy Operations Conclusions

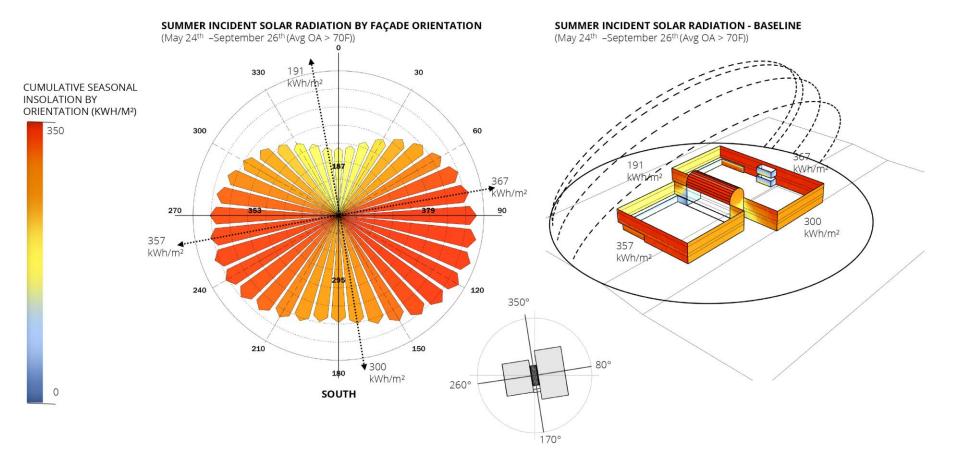
CLIMATE PROFILE - REGION 3A


Annual Air & Ground Temperature Profiles

Key Climate Factors: Atlanta Georgia

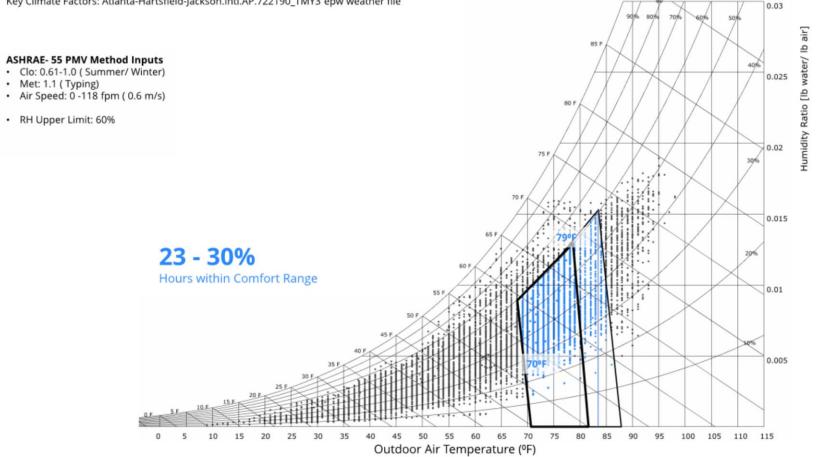
Key Climate Design Drivers

- Summer: May to September (Avg. OA>70°F)
 - Extreme Hot Week Period: Jul 6 Jul 12, Maximum Temp= 98.06F (36.7C). Future climate to be accounted for.
 - Exterior shading beneficial May-September to minimize unwanted summertime solar gains and enable low-energy passive cooling strategies.
- Winter: December to February (Avg. OA< 50°F)
 - Extreme Cold Week Period : Jan 6 to Jan 12, Minimum Temp= 8.96F (-12.8C)
 - Leverage passive solar gains through south-facing façade fenestration to offset supplemental heating requirements.
- Diurnal Swing: Average Diurnal swing between 15-24°F suggests an opportunity to leverage thermal mass to reduce peak indoor temperatures, reduce cooling energy, and improve occupant thermal comfort.
- Ground and Water Temperatures: Relatively stable ground (and Lake) temperatures suggest a potential heat source and sink for the HVAC system.


Rainfall: 30 yr avg - 49" per year

CLIMATE PROFILE

Incident Solar Radiation - SUMMER

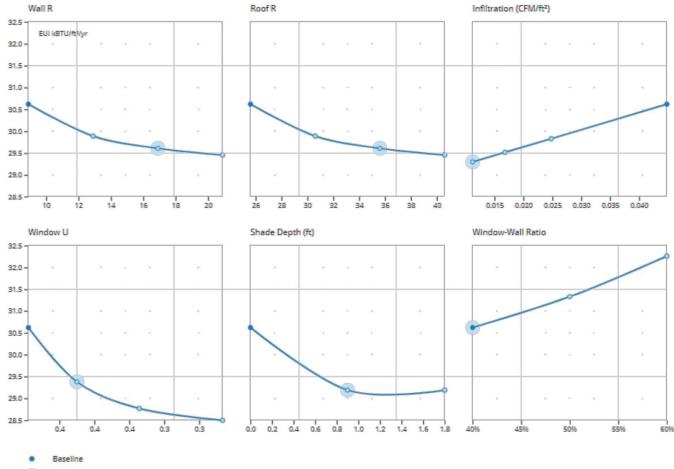

Key Climate Factors: Atlanta Georgia

CLIMATE PROFILE

Psychrometric Chart

Key Climate Factors: Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3 epw weather file

RIGHT STEPS IN THE RIGHT ORDER


Baseline Analysis Climate Analysis Envelope Design Systems Design Energy Supply Testing and Monitoring Post-Occupancy Operations Conclusions

ENVELOPE ASSUMPTIONS - SENSITIVITY ANALYSIS

Preliminary envelope performance targets based on point of diminishing Energy Use Intensity (EUI) savings shown at right:

Parameter	Existing Performance	ASHRAE 90.1-2016	Recommended		
Wall	U-0.3	U-0.122	U-0.058		
Assembly	(R-3.0)	(R-8.0)	(R-17)		
Roof	U0.047	U-0.039	U-0.028		
Assembly	(R-21)	(R-25)	(R-35)		
Window	U-0.59	U-0.45	U-0.40		
Assembly	SHGC-0.52	SHGC-0.25	SHGC-0.25		
Window to Wall Ratio	~50%	40%	40%		
External Shade Depth	N/A	N/A	1' (to be further optimized for visual, thermal comfort)		
Infiltration	0.025	0.045	0.011		
	cfm/ft ²	cfm/ft ²	cfm/ft²		

ASHRAE NZE AEDG recommends R-15.6 wall for Climate Zone 3!

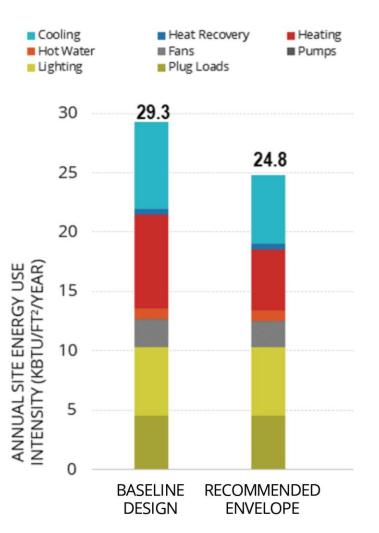
Recommended

ENVELOPE ANALYSIS ASSUMPTIONS

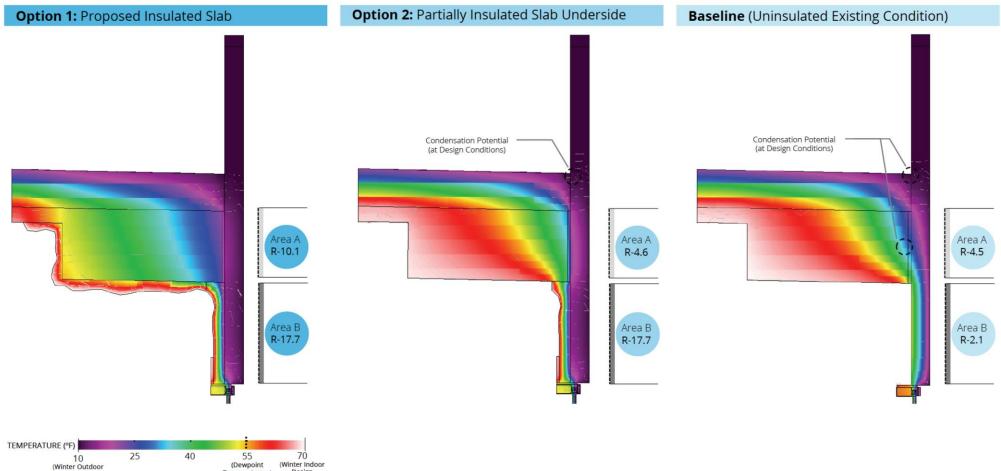
Existing	90.1-2016	Recommended	HVAC System Parameters			
			System Description	VAV PFP Boxes	-	-
U-0.3 (R-3.0)	U-0.122 (R-8.0)	U-0.058 (R-17)	Total Static Pressure	Supply/Exhaust	in	4" / 1"
			Fan Min Turn Down	-	%	10%
110 0 47	11.0.020	11 0 038	Ventilation Airflow	-	cfm	8,317
(R-21)	(R-25)	(R-35)	Total Airflow Capacity (Existing)	-	cfm	72,861
			Total Airflow Capacity (ASHRAE 90.1- 2016)	-	cfm	54,061
U-0.59	U-0.45	U-0.40	Demand Control Ventilation	None	-	
sembly SHGC-0.52 SI	SHGC-0.25	SHGC-0.25	Airside Economizer	Dry-bulb High Limit	°F	65°F
			Airside Heat Recovery	Sensible Eff / Latent Eff	%	50% / 50%
indow to ~50% 40% all Ratio			Cooling Coil	DX Cooling Coil	EER	9.5
	40%	40%	Heating Coil	Electric Resistance	%	100%
			Reheat Coil	Electric Resistance	%	100%
		1' (to be further	Supply Air Temperature		°F	55°F
N/A	N/A	optimized for	Supply Air Control	Warmest Zone Reset	°F	10°F
		comfort)	Domestic Hot Water			
0.0440	0.0440	0.0440	System Description	Electric Resistance	-	_
0.0448 cfm/ft ²	0.0448 cfm/ft ²	cfm/ft ²	DHW System Efficiency	-	%	98%
			DHW Supply Water Temperature DHW Delta-T Water Temperature	-	°F °F	140°F 30°F
	U-0.3 (R-3.0) U0.047 (R-21) U-0.59 SHGC-0.52 ~50% N/A	U-0.3 (R-3.0) U-0.122 (R-8.0) U0.047 (R-21) U-0.039 (R-25) U-0.59 SHGC-0.52 U-0.45 SHGC-0.25 ~50% 40% N/A N/A 0.0448 0.0448	U-0.3 (R-3.0) U-0.122 (R-8.0) U-0.058 (R-17) U0.047 (R-21) U-0.039 (R-25) U-0.028 (R-35) U-0.59 SHGC-0.52 U-0.45 SHGC-0.25 U-0.40 SHGC-0.25 ~50% 40% 40% N/A N/A 1' (to be further optimized for visual, thermal comfort) 0.0448 0.0448 0.0112	U-0.3 (R-3.0)U-0.122 (R-8.0)U-0.058 (R-17)System DescriptionU0.047 (R-21)U-0.039 (R-25)U-0.028 (R-35)Fan Min Turn DownU-0.59 SHGC-0.25U-0.45 (R-35)U-0.40 (R-35)Total Airflow Capacity (Existing) Total Airflow Capacity (ASHRAE 90.1- 2016)U-0.59 SHGC-0.52U-0.45 SHGC-0.25U-0.40 SHGC-0.25Demand Control Ventilation Airside Economizer Airside Heat Recovery Cooling Coil Heating Coil~50%40%40%Heating Coil Supply Air Temperature Supply Air ControlN/AN/A1' (to be further optimized for visual, thermal comfort)System Description0.0448 cfm/ft20.0448 cfm/ft20.0112 cfm/ft2System Description DHW System Efficiency DHW Supply Water Temperature	U-0.3 (R-3.0)U-0,122 (R-8.0)U-0.058 (R-17)System DescriptionVAV PFP BoxesU0.047 (R-21)U-0.039 (R-25)U-0.028 (R-35)Total Static PressureSupply/ExhaustU0.047 (R-21)U-0.039 (R-25)U-0.028 (R-35)Total Airflow Capacity (Existing) Total Airflow Capacity (ASHRAE 90.1- 2016)-U-0.59 SHGC-0.52U-0.45 SHGC-0.25U-0.40 SHGC-0.25Demand Control VentilationNone Airside Economizer-50%40%40%Demand Control VentilationDX Cooling Coil Heating CoilDX Cooling Coil Electric ResistanceN/AN/A1' visual, thermal comfort)1' to be further ovisual, thermal comfort)60112 Chift2System DescriptionElectric Resistance0.0448 cfm/ft20.0448 cfm/ft20.0112 cfm/ft20.0112 cfm/ft2Outla Static Pressure Cooling Coil PW Supply Water Temperature-	U-0.3 (R-3.0) U-0.122 (R-8.0) U-0.058 (R-17) System Description VAV PFP Boxes - U-0.3 (R-3.0) U-0.028 (R-21) Total Static Pressure Supply/Exhaust in U-0.047 (R-21) U-0.039 (R-25) U-0.028 (R-35) U-0.028 (R-35) V-0.028 (R-35) V-0.028 (R-30

ENVELOPE CONSIDERATIONS

Air Infiltration - set ASHRAE's highest target: .11 envelope leakage ratio (ELR75) or 7,122 cubic feet per minute (CFM75).

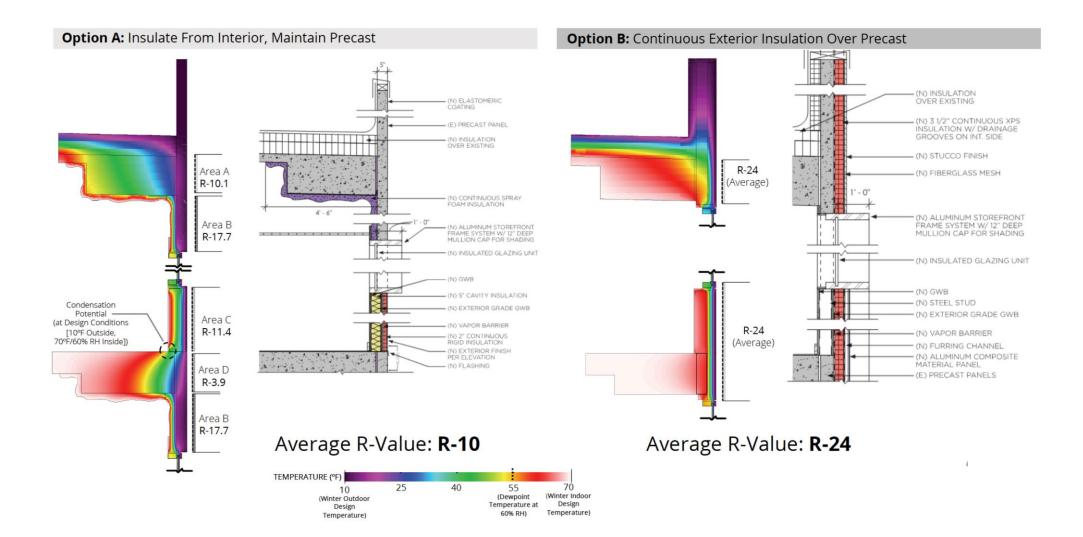

Existing infiltration was equal to a 100sf opening

Insulation optimization, especially at the roof. Where was the optimal R-Value for each part of the exterior envelope?

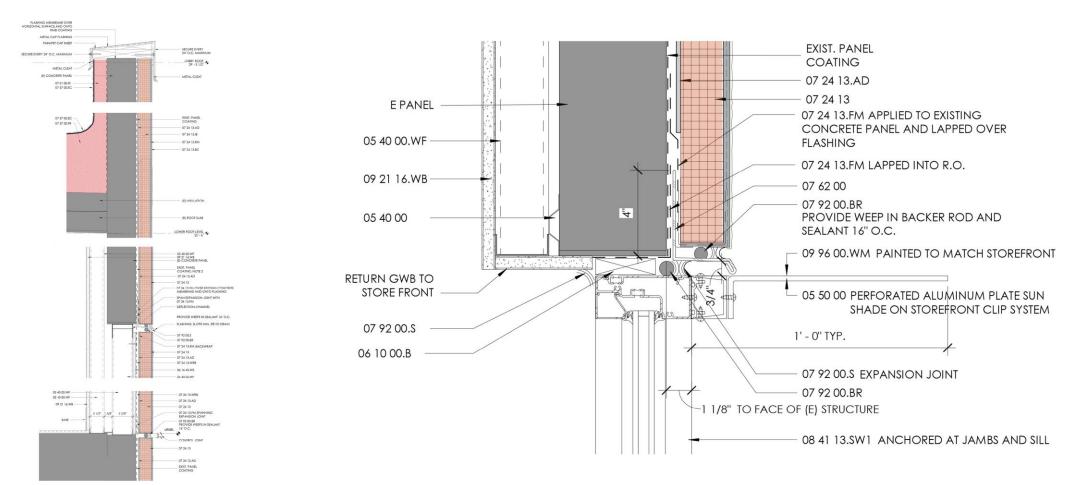

Important to achieve daylight autonomy goals, as well as maximize the thermal efficiency of the wall.

Properly sizing the Window to Wall Ratios (WWR) Solar shading and control devices.

Ambient lighting for the upper level - clerestory or skylights.



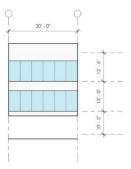
HIGH PERFORMANCE ENVELOPE: AIR INFILTRATION & THERMAL



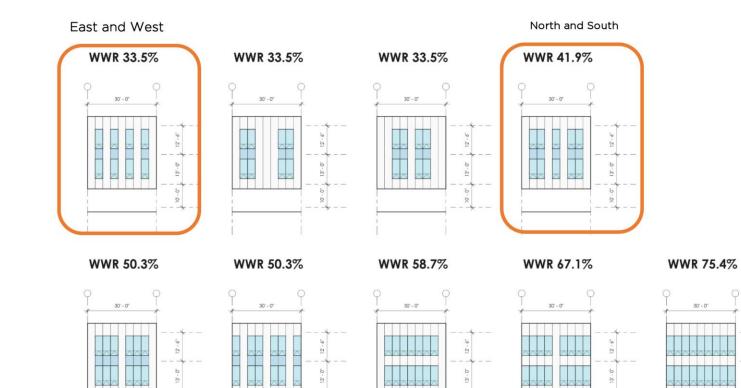
(Winter Outdoor Design Temperature) 60% RH) Temperature)

HIGH PERFORMANCE ENVELOPE: AIR INFILTRATION & THERMAL

HIGH PERFORMANCE ENVELOPE: AIR INFILTRATION & THERMAL



SECTION AT TYPICAL WALL


DETAIL AT TYPICAL WINDOW

HIGH PERFORMANCE ENVELOPE: DAYLIGHT

Optimo Panel Widths: 24, 30, 36, 40 Karrier Panel Widths: 24, 30, 36, 40, 42

ò

ъ

0

ъ

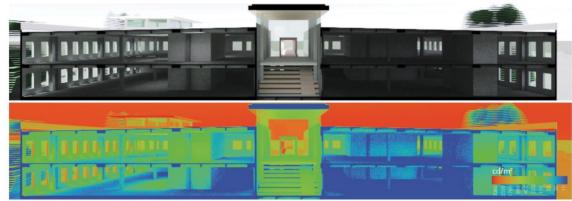
0

6

0

èv.

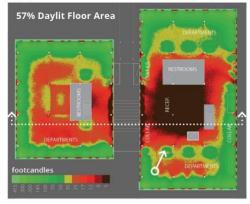
-

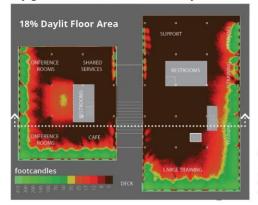

ь

0

HIGH PERFORMANCE ENVELOPE: DAYLIGHTING - FINAL MODEL

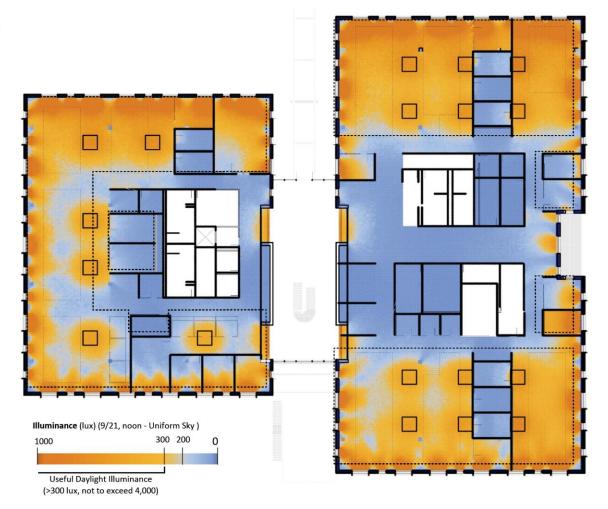
40% WWR N & S, 30% WWR E & W + EXISTING WINDOW HEAD + NEW SILL + LIMITED SKYLIGHTS DAYLIGHT PATTERNS


Section View and Falsecolor Luminance Map, Equinox at 12pm, Clear Sky with Sun

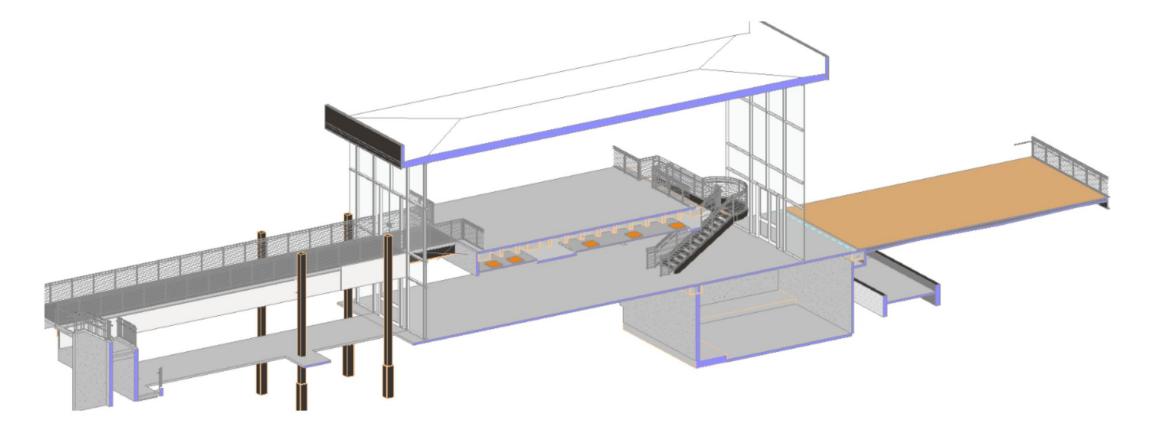

Perspective View and Falsecolor Luminance Map, Equinox at 12pm, Clear Sky with Sun

Daylight Illuminance, Uniform Overcast Sky – Top Floor

Daylight Illuminance, Uniform Overcast Sky – Mid Floor

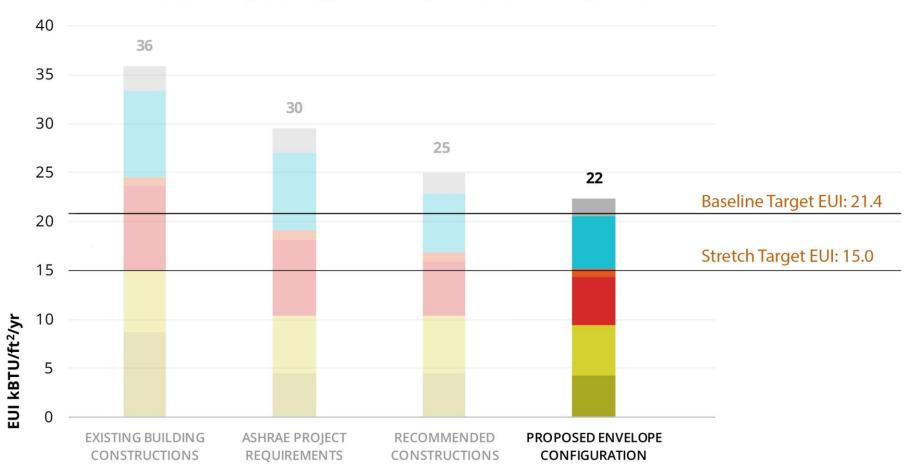


HIGH PERFORMANCE ENVELOPE: FINAL DAYLIGHTING ANALYSIS


Short Windows, 18 Skylights

57%

Percentage of regularly occupied work spaces on the upper level with useful daylight illuminance (>300 lux) at the work plane


HIGH PERFORMANCE ENVELOPE: "LIGHTLY TEMPERED" ATRIUM

HIGH PERFORMANCE ENVELOPE: SUMMARY

Air Infiltration Rates:	.11 envelope leakage ratio (ELR75) or 7,122 cubic feet per minute (CFM75)						
Window Wall Ratios:	29% on East/West walls; 38% on North/South walls						
Daylight Autonomy:	57% overall						
Exterior Cladding:	EIFS with 3.5" of R5 insulation over existing. R17 overall						
Window Performance:	U- 0.4; SHGC - 0.25; overhang/shade depth - 12" optimal						
Skylights:	18 skylights on top floor						
Roof:	R 39 total - adding approximately 4" new insulation.						

HIGH PERFORMANCE ENVELOPE: EUI IMPACTS

■ FANS ■ PUMPS ■ COOLING ■ HOT WATER ■ HEATING ■ LIGHTING ■ PLUG LOADS

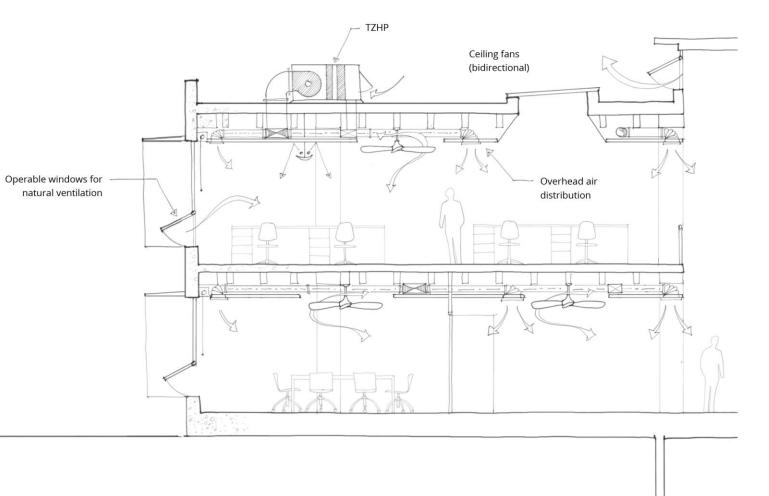
RIGHT STEPS IN THE RIGHT ORDER

Baseline Analysis Climate Analysis Envelope Design Systems Design Energy Supply Testing and Monitoring Post-Occupancy Operations Conclusions

HVAC OPTION 1 - ALL AIR TZHP SYSTEM

Rooftop Packaged Thermodynamically Zoned ASHPs with DOAS, enthalpy heat recovery, DCV, and a desiccant wheel

Air Distribution Options

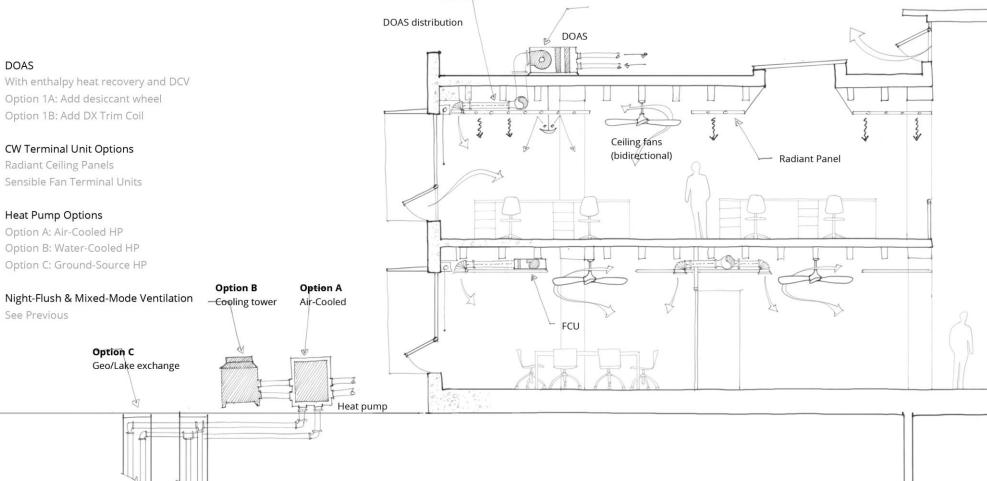

Overhead, Mixed Air

Mixed-Mode Ventilation

Operable windows and atrium exhaust Ceiling fans with reverse control

Night-Flush / Airside Economizer

Fan-assisted night flush

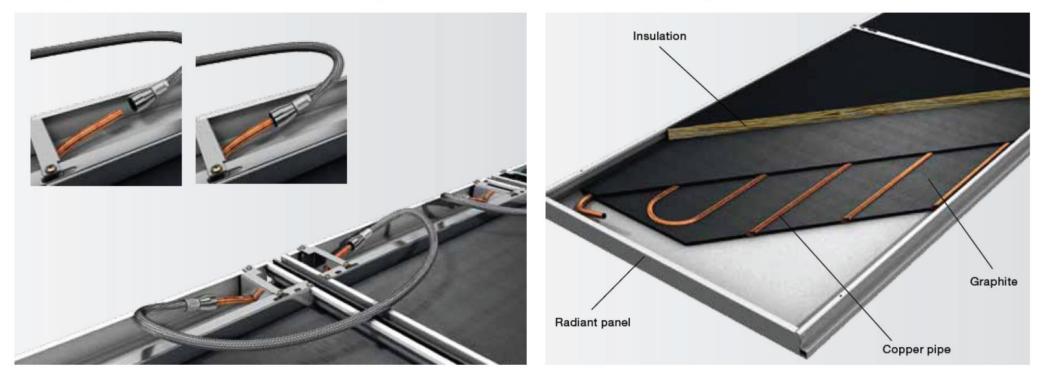


HVAC OPTION 2 - HYDRONIC SYSTEM

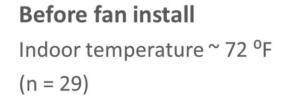
DOAS With enthalpy heat recovery and DCV Option 1A: Add desiccant wheel Option 1B: Add DX Trim Coil

Sensible Fan Terminal Units Heat Pump Options

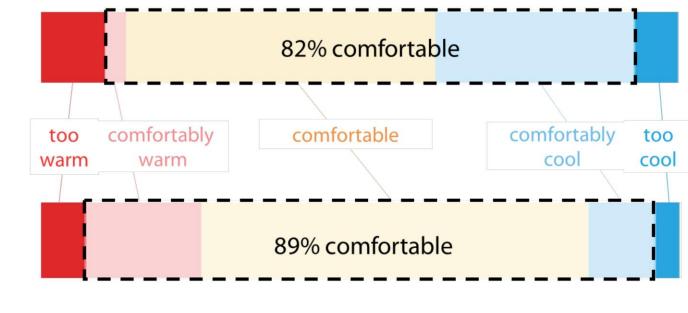
Option A: Air-Cooled HP Option B: Water-Cooled HP Option C: Ground-Source HP


HYDRONIC OVERHEAD PANELS

Panels contain a multi-pass single circuit coil.

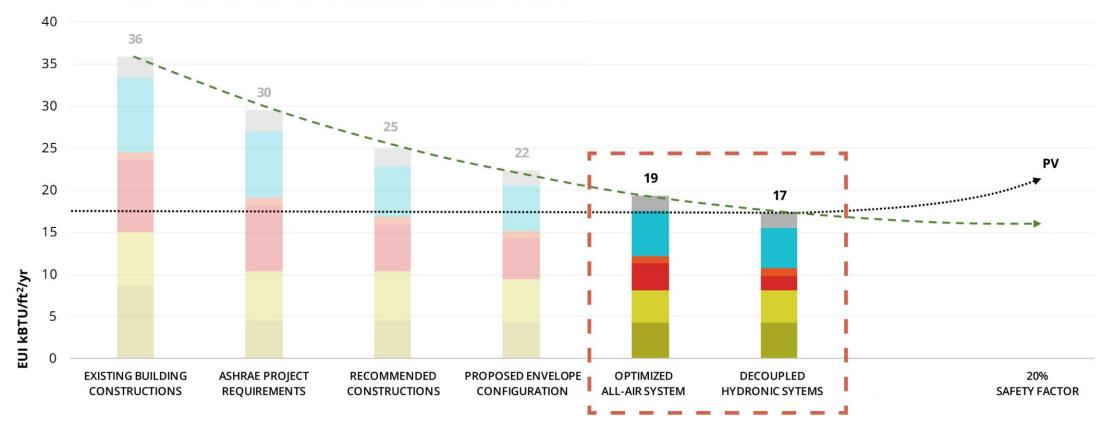

Panels may be piped in series (up to 64 square feet of active panel)

Quick disconnects for hoses allow for ease of installation and replacement.


Piping to the panels will be PEX tubing concealed above the cloud/array.

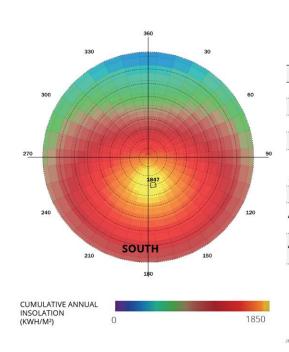
ASHRAE HYDRONIC SYSTEM OVERVIEW - CEILING FANS

After fan install and air conditioning failure Indoor temperature ~ 80 $^{\circ}$ F (n = 28)


HYDRONIC SYSTEM INFRASTRUCTURE

HYDRONIC SYSTEM INSTALLATION

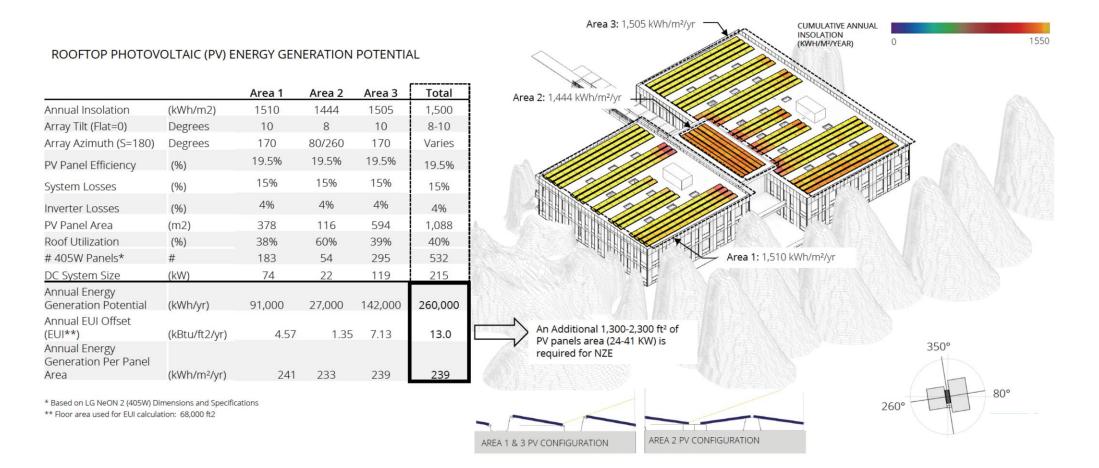
HVACR SYSTEMS - EUI IMPACTS



FANS PUMPS COOLING HOT WATER HEATING LIGHTING PLUG LOADS

ENERGY GENERATION - PHOTOVOLTAICS

Rooftop Photovoltaic (PV) Generation Potential Key Climate Factors: Atlanta Georgia



		p	
	30 DEGREE PANEL TILT	10 DEGREE PANEL TILT	E-W DUAL-TILT PANELS (@ 8°)
	Option 1	Option 2	Option 3
Annual Insolation (kWh/m2)	1847	1787	1657 (West-Facing) / 1632 (East)
PV Panel Efficiency (%)	19%	19%	19%
System Losses (%)	15%	15%	15%
Inverter Losses (%)	4%	4%	4%
PV Panel Area (55- 68% Roof Utilization*) (m2)	620 -713	884 -1,078	1,178 -1,430
DC System Size (kW)	118 -136	168 -205	224 - 272
Annual PV Generation Potential (kWh/yr)	180,000 - 207,000	248,000 - 299,000	304,000 - 365,000
Annual PV Generation Potential (EUI**) (kBtu/ft2/yr)	9 -10	12 -15	15 -18
2607 Schematic Layout			

* Total roof area used for PV panel area estimate = 27,017 ft2 (2,510 m2)

** Floor area used for EUI calculation: 68,118 ft2 (6,328 m2)

ENERGY GENERATION - PHOTOVOLTAICS

System Provides 332KW of capacity; Utilization capped by utility at 250KW

PHOTOVOLTAICS INSTALLATION

TESTING AND MONITORING DURING CONSTRUCTION

Infiltration Testing:

Air infiltration target- set ASHRAE's highest performance target: .11 envelope leakage ratio (ELR75) or 7,122 cubic feet per minute (CFM75)

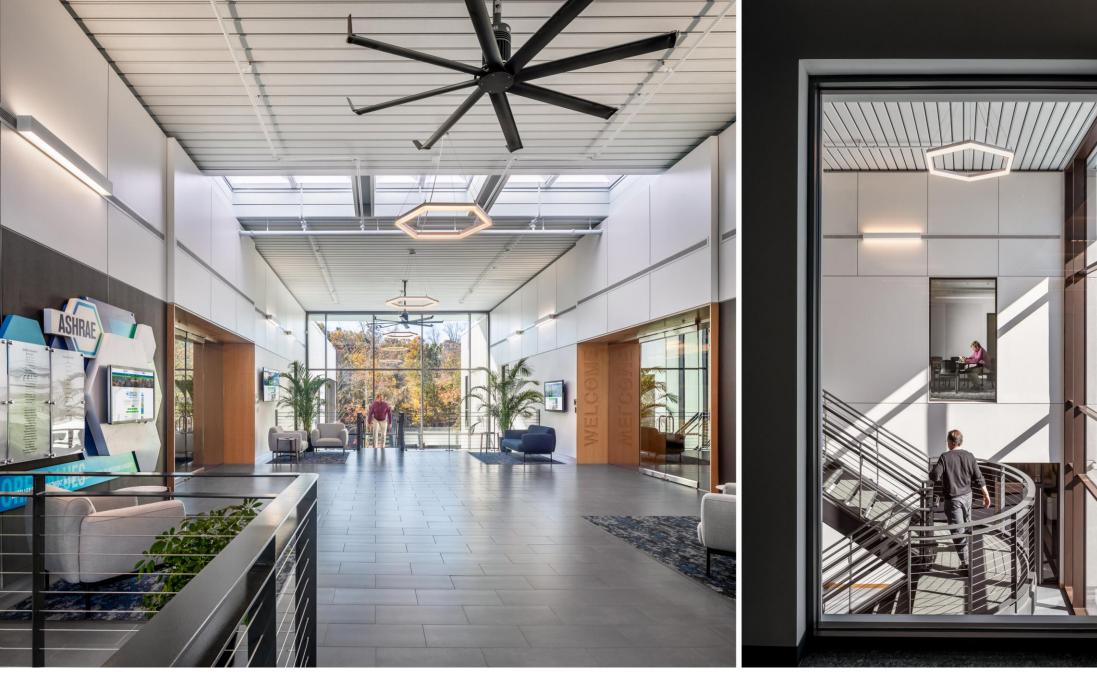
Air Infiltration final testing:

.34 envelope leakage ratio (ELR75) or 22,382 cubic feet per minute (CFM75)

Factors contributing to a higher rate:

Exterior doors were not completely installed - thresholds and seals were missing. Biggest culprit was a valve in the DOAS units that under positive pressure is designed to open to the outside, to release the pressure. This was not fully understood and the valve was not able to be completely shut during testing.

FINAL LAYOUT


UPPER / ENTRY LEVEL OFFICES / MAIN ENTRY

MIDDLE LEVEL OFFICES / TRAINING CENTER



August 31, 2023

CURRENT OPERATIONAL SUMMARY

Substantial Completion and Testing done December 2020.

Soft opening January 2021 (limited employees only - COVID related)

PV Array installed October 2021 and fully operational Dec. 2021.

Training and Tours began again in late 2021.

Staff is still largely remote working.

Building has been operating at closer to 18 EUI with this reduced demand.

POST-CONSTRUCTION OCCUPANCY AND OPERATIONS

NREL is doing a deep dive analysis of the building operations that will be published in 2023.

Building operations are lower than modeled for demand loading.

The PV array, which is 332KW, is capped for use at 250KW for the time being. This was a function of the local utility permitting process and not a part of the system or intent. This equates, roughly to a sub 18 EUI for consumption.

There are ongoing adjustments with some of the equipment and BAS. These have an incremental effect on the amount of energy used.

Building is still operating at roughly NZE - this is probably due to a lower demand load. ASHRAE is actively seeing if they can optimize the systems to get the energy consumption below the 250KV.

LESSONS LEARNED

Process is key - right steps in the right order will improve results.

Know your local market - capabilities, capacity, pricing, etc.

Carefully examine existing building infrastructure early on.

Envelope improvement scope to meet EUI targets was more intensive than originally planned.

Testing sequences and challenges - especially air infiltration.

Integration - BAS, donated materials, existing furniture, etc.

Coordination = communication. Always.

PROJECT TEAM

ARCHITECTURE: HOUSER WALKER ARCHITECTURE ASSOCIATE ARCHITECT: MCLENNAN DESIGN MEPFP ENG: INTEGRAL GROUP SHEAR STRUCTURAL STRUCTURAL ENG: AV/IT/SECURITY: TSAV COST MODELING: COSTING SERVICES GROUP ACOUSTICS: ACUSTICA **COLLINS | DARDEN** PROJECT MANAGMENT: CONSTRUCTION MANAGER: SKANSKA N.A. THE EPSTEN GROUP COMMISSIONING: TESTING: SK COLLABORATIVE

Thank you

Gregory Walker, AIA, LEED AP greg@houserwalker.com

Stanton Stafford, PE, LEED FELLOW stanton.stafford@burohappold.com