

Digital Twin Capabilities for Resiliency & Energy Assurance

Pat Wallis AICP | LEED AP | AIA Assoc. | GISP Esri Built Environment Innovation Lab

Project Datasheet

Impacted Users

•Architects & Engineers | Building Owners | Planners & Developers | Policy Makers & Executives

•Problem

•Impacted users cannot see the long-term cumulative impact of decisions and actions regarding the built environment.

Impacts

•Poorly designed and energy inefficient infrastructurebuildings account for 40% of carbon emissions

Solution

•Provide impacted users digital twin capabilities to decarbonize infrastructure using building, solar, and weather physics.

•Reduce the carbon footprint of the built environment and promote sustainability.

Technology Outcomes

•Tools to analyze building form and estimated additional carbon generation, works at building and urban scale

•Solar energy tools to calculate solar insolation for all building faces.

•Al and Physics-based Heat Transfer tools to calculate conductive, radiative, and convective heat transfer.

Premises and Assumptions: Solar Orientation

- Accurate building orientation is fundamental in passive energy use
- A rectangular house's ridgeline should run eastwest to maximize the length of the southern side.
- Buildings oriented toward the Sun without any additional solar features save between 10% and 20% and up to 40% on heating

Premises and Assumptions: Surface / Volume

- Minimizing the surface area (S) for enclosed volumes (V) maximizes energy efficiency and lowers the embodied carbon from building materials
- There is positive correlation of heat gain with S/V was nearly linear with a slope of around 41.8 kWh/m2 /m-1
- Shape Factor g: S / S min is a scaleless factor that provide instant feedback to evaluate building design. 'a rapid feeler for the 'goodness' of any building shape'

Premises and Assumptions: Surface / Volume

- minimizing the surface area (S) for enclosed volumes (V) maximizes energy efficiency and lowers the embodied carbon from building materials
- There is positive correlation of heat gain with S/V was nearly linear with a slope of around 41.8 kWh/m2 /m-1
- Shape Factor g: S / S min is a scaleless factor that provide instant feedback to evaluate building design. 'a rapid feeler for the 'goodness' of any building shape'

Premises and Assumptions: Heat Transfer Model

- Conduction through Roofs, Window, Walls
- where Te is < Ti (cooler outside than inside)
- Qcd = $A * \Delta T / RSI$

Where:

- Qcd is the energy from conduction (Watthours)
- A is the surface area (m2)
- $\Delta T = abs(Te Ti)$
- Te is the exterior ambient temperature (Celsius)
- Ti is the interior ambient temperature (Celsius)
- RSI is the heat transfer resistance coefficient recommended for roofs, walls and windows (m2·K/W)

Premises and Assumptions: Heat Transfer Model

- Conduction through Roofs, Window, Walls
- where Te is > Ti (warmer outside than inside)
- Qcd = A * (Ts Ti) / RSI

Where:

- Qcd is the energy from conduction (Watthours)
- A is the surface area (m2)
- Ts is the surface temperature (Celsius)
- Ti is the interior ambient temperature (Celsius)
- RSI is the heat transfer resistance coefficient recommended for roofs, walls and windows (m2·K/W)

Premises and Assumptions: Heat Transfer Model

- Conduction through Roofs, Window, Walls
- where Te is > Ti (warmer outside than inside)
- Qcd = A * (Ts Ti) / RSI
- Ts is calculated from the plane of array global (poa_global) incident irradiation (W/h m2) to each building surface.
- Ts = pvlib.temperature.faiman_rad(poa_global, Te, wind_speed=windspeed, ir_down=ir, u0=25 (default), u1=conv_ht_c, sky_view=1.0, emissivity=emissivity)

Basic

[procedural analysis, 'atlas' layers, dashboards, ...]

Calculate Energy loss from Air Exchanges def calc_Qv(row,b_volume,tempInt,exchanges,airP_df):

- Energy loss = Air exchange rate * Volume of the building * Temperature difference * Specific heat of air
- Qv = specific heat (air) x n x v x dT watts The energy required to raise one cubic metre of air through one kelvin is 0.33 watt-hours, i.e. its heat capacity per cubic metre is 0.33 wh m-3 k-1. Thus the total ventilation heat loss, Qv, will be
- Ar exchange rate = the rate at which air is exchanged between the building and the outdoors, measured in air changes per hour (AGN). Volume of the building = the total volume of the indoor space, measured in cubic meters (mB). Temperature difference = the difference between the indoor and outdoor temperatures, measured in degrees (Calis) (°Cc) = measured in duration or kilogema of air by one degree (Calis) of air the amount of merity regirted to hait one kilogema of air by one degree (Calis).
- ASHRAE RECOMMENDATIONS

Assence RECOMPENDATIONS homes: .35 to 1 per hour offices and retail shops: 2 to 3 schools: 5 to 6 sports facilities: 4 to 8 restaurants: 6 to 8

tempExt = row['12m']
Qv_ksh^ = weather_copy['Qv_ksh']
Qv_heating_ksh = weather_copy['Qv_heating_ksh']
Qv_cooling_ksh = weather_copy['Qv_cooling_ksh']

Advanced

[basic+, solar analysis, & energy model, ...]

Solution Architecture

Decarbonizing the Built Environment

Multi-Scale FM

Where to Start

- 1. Input = Building Footprints OR 3d shell
 - Zoning (commercial or residential)
 - Elevation
 - Height
- 2. Procedural output = enriched building footprints, 3d shell, face panels, and panel points

'AreaSF', 'Bearing', 'EW_Length', 'EW_ldir_factor', 'E_Azimuth', 'E_Length', 'E_ldir_factor', 'EdgeLength', 'Floors', 'FootprintSF', 'Height', 'NS_Length', 'NS_ldir_factor', 'N_Azimuth', 'N_Length', 'N_ldir_factor', 'Perimeter', 'S_Azimuth', 'S_Length', 'S_ldir_factor', 'Volume', 'W_Azimuth', 'W_Length', 'W_ldir_factor', 'bldType', 'btu_total', 'carbonWasted', 'carbon_total', 'carbon_wasted_elec', 'compactness_PP', 'compactness_S', 'costsWasted', 'depth_Length', 'energyPenaltyPct', 'energyWastedBTUs', 'gal_propane_total', 'gal_propane_wasted', 'gas_wasted_elec', 'ideal_sa_cube', 'k_wh_ratio', 'kwh_elec_total', 'kwh_elec_wasted', 'kwh_ft2', 'kwh_total', 'lw_ratio', 'lw_ratio_NS_EW', 'mainAzimuth', 'mainDir', 'mcf_gas_total', 'mcf_gas_wasted', 'propane_wasted_elec', 'r_dw_ratio', 'rcFactor_cube', 'rcFactor_cube_v2', 'rcFactor_sphere', 'sArea', 'svRatio', 'sv_added_carbon_elec', 'sv_added_kwh', 'sv_added_kwh_elec', 'sv_added_kwh_ft2', 'sv_added_mcf_gas', 'width_Length'

Multi-Scale FM

Where to Go – Advanced Capabilities

3. Use procedural output to tally solar insolation (kWh/m2)

- 4. Use solar insolation and weather data to compute:
 - kWh heating and cooling using heat transfer model for all building faces - summarize by building
 - kWh savings & Carbon reduction for ideal form

Multi-Scale FM

Where to Go – Advanced Capabilities

5. Use Skyline Analysis to account for shadow impacts on energy consumption calculations

el Diablo Buildings by Wasted Carbon - Dashboard

Decarbonizing the Built Environment User Needs

• Architects / Engineers

- quickly evaluate building form metrics and energy reductions / carbon savings
- UI/UX needs. Form CAD or BIM as plugin, or simple web interface to upload model and get results.

• Facility Engineers / RP Asset Managers

- evaluate building form metrics, potential energy reductions, carbon and cost savings. Metrics for MILCON and facility sustainment, eg. Lifetime OE savings
- UI/UX Needs. Load models and view dashboard (as-is vs. to-be). See ESG scores
- Facility Planners / Installation Command
 - Tools to score proposed MILCON, existing infrastructure and help develop new installation design policies
 - UI/UX Needs. Data curation and publishing tools, analytics tools to create information products for decision makers, e.g. DD 1391 review, review of proposed maintenance & repair (why repair a poorly designed facility, instead of demo/new build)
- Policy Makers / Executives
 - Evaluate building form metrics for installation / command / service.
 - See potential energy, carbon and cost reductions. Data to craft funding policies for rehabilitation of facilities, annual and lifetime energy, carbon reductions, trajectory to ideal state
 - UI/UX Needs. View dashboard (as-is vs. to-be). See building metrics, energy and climate scores

Questions?

Thank you